求解RICH-VRP的ga -移位邻域突变与ga -对交换突变的多切点交叉比较

Ismail Ismail, S. Sanusi, Pratiwi Hendro Wahyudiono, Nurdiana Daeng Pawawo
{"title":"求解RICH-VRP的ga -移位邻域突变与ga -对交换突变的多切点交叉比较","authors":"Ismail Ismail, S. Sanusi, Pratiwi Hendro Wahyudiono, Nurdiana Daeng Pawawo","doi":"10.36352/jt-ibsi.v3i2.142","DOIUrl":null,"url":null,"abstract":"This research was focused on a heterogeneous fleet of passenger ships to solve multi depot by using genetic algorithm (GA) to solve combinatorial problem i.e. vehicle routing problem (VRP). The objective of this study is to compare the roulette wheel selection, multi cut point crossover, and shift neighbourhood mutation with roulette wheel selection, multi cut point crossover, and pairs exchange mutation to minimize the sum of the fuel consumption travelled, the cost for violations of the ship draft and sea depth, and penalty cost for violations of the load factor; maximize number port of call; and maximize load factor. Problem solving in this study is how to generate feasible route combinations for rich VRP that meets all the requirements with optimum solution. Route generated by roulette wheel selection, multi cut point crossover, and shift neighbourhood mutation could decrease fuel consumption about 19.4350% compared to roulette wheel selection, multi cut point crossover, and pairs exchange mutation about 18.6738%.","PeriodicalId":375423,"journal":{"name":"Jurnal Teknik Ibnu Sina (JT-IBSI)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of GA-Shift Neighbourhood Mutation and GA-Pairs Exchange Mutation with Multi Cut Point Crossover in Solving RICH-VRP\",\"authors\":\"Ismail Ismail, S. Sanusi, Pratiwi Hendro Wahyudiono, Nurdiana Daeng Pawawo\",\"doi\":\"10.36352/jt-ibsi.v3i2.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research was focused on a heterogeneous fleet of passenger ships to solve multi depot by using genetic algorithm (GA) to solve combinatorial problem i.e. vehicle routing problem (VRP). The objective of this study is to compare the roulette wheel selection, multi cut point crossover, and shift neighbourhood mutation with roulette wheel selection, multi cut point crossover, and pairs exchange mutation to minimize the sum of the fuel consumption travelled, the cost for violations of the ship draft and sea depth, and penalty cost for violations of the load factor; maximize number port of call; and maximize load factor. Problem solving in this study is how to generate feasible route combinations for rich VRP that meets all the requirements with optimum solution. Route generated by roulette wheel selection, multi cut point crossover, and shift neighbourhood mutation could decrease fuel consumption about 19.4350% compared to roulette wheel selection, multi cut point crossover, and pairs exchange mutation about 18.6738%.\",\"PeriodicalId\":375423,\"journal\":{\"name\":\"Jurnal Teknik Ibnu Sina (JT-IBSI)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknik Ibnu Sina (JT-IBSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36352/jt-ibsi.v3i2.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Ibnu Sina (JT-IBSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36352/jt-ibsi.v3i2.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以异构客船编队为研究对象,利用遗传算法求解组合问题,即车辆路径问题(VRP)。本研究的目的是比较轮盘选择、多截点交叉和位移邻域突变与轮盘选择、多截点交叉和配对交换突变,以最大限度地减少燃油消耗总和、违反船舶吃水和水深的成本以及违反载重系数的惩罚成本;最大数量的停靠港;最大化负载系数。本研究解决的问题是如何生成富VRP的可行路由组合,并以最优解满足所有需求。轮盘选择、多切点交叉和shift邻域突变产生的路径比轮盘选择、多切点交叉和配对交换突变产生的路径油耗减少约19.4350%,减少18.6738%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of GA-Shift Neighbourhood Mutation and GA-Pairs Exchange Mutation with Multi Cut Point Crossover in Solving RICH-VRP
This research was focused on a heterogeneous fleet of passenger ships to solve multi depot by using genetic algorithm (GA) to solve combinatorial problem i.e. vehicle routing problem (VRP). The objective of this study is to compare the roulette wheel selection, multi cut point crossover, and shift neighbourhood mutation with roulette wheel selection, multi cut point crossover, and pairs exchange mutation to minimize the sum of the fuel consumption travelled, the cost for violations of the ship draft and sea depth, and penalty cost for violations of the load factor; maximize number port of call; and maximize load factor. Problem solving in this study is how to generate feasible route combinations for rich VRP that meets all the requirements with optimum solution. Route generated by roulette wheel selection, multi cut point crossover, and shift neighbourhood mutation could decrease fuel consumption about 19.4350% compared to roulette wheel selection, multi cut point crossover, and pairs exchange mutation about 18.6738%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信