A. Chhokra, C. Barreto, A. Dubey, G. Karsai, X. Koutsoukos
{"title":"电力攻击:一个全面的工具链,用于建模和模拟电力系统中的攻击","authors":"A. Chhokra, C. Barreto, A. Dubey, G. Karsai, X. Koutsoukos","doi":"10.1145/3470481.3472705","DOIUrl":null,"url":null,"abstract":"Due to the increased deployment of novel communication, control and protection functions, the grid has become vulnerable to a variety of attacks. Designing robust machine learning based attack detection and mitigation algorithms require large amounts of data that rely heavily on a representative environment, where different attacks can be simulated. This paper presents a comprehensive tool-chain for modeling and simulating attacks in power systems. The paper makes the following contributions, first, we present a probabilistic domain specific language to define multiple attack scenarios and simulation configuration parameters. Secondly, we extend the PyPower-dynamics simulator with protection system components to simulate cyber attacks in control and protection layers of power system. In the end, we demonstrate multiple attack scenarios with a case study based on IEEE 39 bus system.","PeriodicalId":212112,"journal":{"name":"Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power-attack: a comprehensive tool-chain for modeling and simulating attacks in power systems\",\"authors\":\"A. Chhokra, C. Barreto, A. Dubey, G. Karsai, X. Koutsoukos\",\"doi\":\"10.1145/3470481.3472705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increased deployment of novel communication, control and protection functions, the grid has become vulnerable to a variety of attacks. Designing robust machine learning based attack detection and mitigation algorithms require large amounts of data that rely heavily on a representative environment, where different attacks can be simulated. This paper presents a comprehensive tool-chain for modeling and simulating attacks in power systems. The paper makes the following contributions, first, we present a probabilistic domain specific language to define multiple attack scenarios and simulation configuration parameters. Secondly, we extend the PyPower-dynamics simulator with protection system components to simulate cyber attacks in control and protection layers of power system. In the end, we demonstrate multiple attack scenarios with a case study based on IEEE 39 bus system.\",\"PeriodicalId\":212112,\"journal\":{\"name\":\"Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470481.3472705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470481.3472705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-attack: a comprehensive tool-chain for modeling and simulating attacks in power systems
Due to the increased deployment of novel communication, control and protection functions, the grid has become vulnerable to a variety of attacks. Designing robust machine learning based attack detection and mitigation algorithms require large amounts of data that rely heavily on a representative environment, where different attacks can be simulated. This paper presents a comprehensive tool-chain for modeling and simulating attacks in power systems. The paper makes the following contributions, first, we present a probabilistic domain specific language to define multiple attack scenarios and simulation configuration parameters. Secondly, we extend the PyPower-dynamics simulator with protection system components to simulate cyber attacks in control and protection layers of power system. In the end, we demonstrate multiple attack scenarios with a case study based on IEEE 39 bus system.