通过堆叠过孔增加薄膜布线密度

E. Perfecto, L. Goldmann
{"title":"通过堆叠过孔增加薄膜布线密度","authors":"E. Perfecto, L. Goldmann","doi":"10.1109/ECTC.2002.1008165","DOIUrl":null,"url":null,"abstract":"Via stacking has been used successfully over the years during the fabrication of semiconductor personalization layers. This structure requires Chem-mech planarization to fabricate via studs and discrete wiring. In contrast, non planar structures result when sequential layers of metal and dielectric are deposited without the planarization step. During the fabrication of MCM-D, polyimide dielectric films are patterned to create a via opening, allowing for level-to-level connection. Traditionally, these vias are not stacked. In multilevel thin films, the more common via structures are either staircase or spiral. Even when the vias are co-centered, as is the case for power vias of some MCM-D products, the via diameter is increased from one level to the next level producing a reverse pyramid structure. IBM has developed stacked vias technology which simplifies and adds flexibility to the thin film design. This paper will discuss the processing aspects of stacked vias on a non-planar structure, and will present a mechanical finite element model for various via diameters (5, 10, 15, 20, and 25 um) on a four metal level structure. It will also contrast the effect on topography and planarity of stacked and non-stacked via structures.","PeriodicalId":285713,"journal":{"name":"52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Increased thin film wiring density by stacked vias\",\"authors\":\"E. Perfecto, L. Goldmann\",\"doi\":\"10.1109/ECTC.2002.1008165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Via stacking has been used successfully over the years during the fabrication of semiconductor personalization layers. This structure requires Chem-mech planarization to fabricate via studs and discrete wiring. In contrast, non planar structures result when sequential layers of metal and dielectric are deposited without the planarization step. During the fabrication of MCM-D, polyimide dielectric films are patterned to create a via opening, allowing for level-to-level connection. Traditionally, these vias are not stacked. In multilevel thin films, the more common via structures are either staircase or spiral. Even when the vias are co-centered, as is the case for power vias of some MCM-D products, the via diameter is increased from one level to the next level producing a reverse pyramid structure. IBM has developed stacked vias technology which simplifies and adds flexibility to the thin film design. This paper will discuss the processing aspects of stacked vias on a non-planar structure, and will present a mechanical finite element model for various via diameters (5, 10, 15, 20, and 25 um) on a four metal level structure. It will also contrast the effect on topography and planarity of stacked and non-stacked via structures.\",\"PeriodicalId\":285713,\"journal\":{\"name\":\"52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2002.1008165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2002.1008165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在半导体个性化层的制造过程中,通过堆叠技术已经成功地应用了多年。这种结构需要化学机械刨平,通过螺柱和分立布线来制造。相反,当连续沉积金属层和介电层而不进行平面化步骤时,则会产生非平面结构。在MCM-D的制造过程中,聚酰亚胺介电薄膜被设计成通过开口,允许层对层连接。传统上,这些过孔不是堆叠的。在多层薄膜中,更常见的通孔结构要么是阶梯结构,要么是螺旋结构。即使通孔是同心的,就像一些MCM-D产品的电源通孔一样,通孔直径也会从一级增加到下一级,从而产生反向金字塔结构。IBM已经开发了堆叠过孔技术,该技术简化了薄膜设计并增加了灵活性。本文将讨论非平面结构上堆叠过孔的加工方面,并将给出四金属水平结构上各种直径(5,10,15,20和25um)的机械有限元模型。它还将对比堆叠和非堆叠通孔结构对地形和平面性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increased thin film wiring density by stacked vias
Via stacking has been used successfully over the years during the fabrication of semiconductor personalization layers. This structure requires Chem-mech planarization to fabricate via studs and discrete wiring. In contrast, non planar structures result when sequential layers of metal and dielectric are deposited without the planarization step. During the fabrication of MCM-D, polyimide dielectric films are patterned to create a via opening, allowing for level-to-level connection. Traditionally, these vias are not stacked. In multilevel thin films, the more common via structures are either staircase or spiral. Even when the vias are co-centered, as is the case for power vias of some MCM-D products, the via diameter is increased from one level to the next level producing a reverse pyramid structure. IBM has developed stacked vias technology which simplifies and adds flexibility to the thin film design. This paper will discuss the processing aspects of stacked vias on a non-planar structure, and will present a mechanical finite element model for various via diameters (5, 10, 15, 20, and 25 um) on a four metal level structure. It will also contrast the effect on topography and planarity of stacked and non-stacked via structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信