分布参数同步系统类梯度行为的新准则

V. Smirnova, A. Proskurnikov, E. E. Pak, R. V. Titov
{"title":"分布参数同步系统类梯度行为的新准则","authors":"V. Smirnova, A. Proskurnikov, E. E. Pak, R. V. Titov","doi":"10.1109/STAB49150.2020.9140672","DOIUrl":null,"url":null,"abstract":"This paper is concerned with stability properties of a Lur’e system obtained by interconnection of a general linear time-invariant block (possibly, infinite-dimensional) and a periodic nonlinearity. Such systems usually have multiple equilibria. In the paper, two new frequency-algebraic stability criteria are established by using. Popov’s method of \"a priori integral indices\", Leonov’s method of nonlocal reduction and the Bakaev-Guzh technique.","PeriodicalId":166223,"journal":{"name":"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New criteria for gradient–like behavior of synchronization systems with distributed parameters\",\"authors\":\"V. Smirnova, A. Proskurnikov, E. E. Pak, R. V. Titov\",\"doi\":\"10.1109/STAB49150.2020.9140672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with stability properties of a Lur’e system obtained by interconnection of a general linear time-invariant block (possibly, infinite-dimensional) and a periodic nonlinearity. Such systems usually have multiple equilibria. In the paper, two new frequency-algebraic stability criteria are established by using. Popov’s method of \\\"a priori integral indices\\\", Leonov’s method of nonlocal reduction and the Bakaev-Guzh technique.\",\"PeriodicalId\":166223,\"journal\":{\"name\":\"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAB49150.2020.9140672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB49150.2020.9140672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一般线性定常块(可能是无限维的)与周期非线性的互连所得到的Lur 'e系统的稳定性。这样的系统通常有多重平衡。本文建立了两个新的频率-代数稳定性判据。Popov的“先验积分指标”法、Leonov的非局部约简法和Bakaev-Guzh技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New criteria for gradient–like behavior of synchronization systems with distributed parameters
This paper is concerned with stability properties of a Lur’e system obtained by interconnection of a general linear time-invariant block (possibly, infinite-dimensional) and a periodic nonlinearity. Such systems usually have multiple equilibria. In the paper, two new frequency-algebraic stability criteria are established by using. Popov’s method of "a priori integral indices", Leonov’s method of nonlocal reduction and the Bakaev-Guzh technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信