Lanxin Luo, Ao Wang, Zhanhang Liu, Ye Xia, Limin Sun
{"title":"上海滨江大道双联桥模态分析与TMD设计","authors":"Lanxin Luo, Ao Wang, Zhanhang Liu, Ye Xia, Limin Sun","doi":"10.2749/nanjing.2022.0777","DOIUrl":null,"url":null,"abstract":"Wing-spread bridge is an innovative stress-ribbon arch pedestrian bridge expected to be built along Binjiang Avenue, Shanghai, China. Human-induced vibration is an important factor that needs to be considered in the operation period of pedestrian bridges. However, there is a lack of research on this new structure's dynamic characteristics and vibration reduction measures. In this paper, the finite element (FE) model of the Wing-spread Bridge is firstly established, and the modal analysis is conducted based on the FE model. Subsequently, the maximum acceleration of each mode under pedestrian dynamic load is calculated. The result shows that the maximum acceleration of the first- order lateral bending mode exceeds the best comfortable indicator. Finally, two tuned mass dampers (TMD) are designed to be installed at the top of the arches, and the vibration amplitude of the bridge with TMD meets the requirements.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Analysis and TMD Design of the Wing-spread Bridge: A Pedestrian Bridge along the Binjiang Avenue, Shanghai\",\"authors\":\"Lanxin Luo, Ao Wang, Zhanhang Liu, Ye Xia, Limin Sun\",\"doi\":\"10.2749/nanjing.2022.0777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wing-spread bridge is an innovative stress-ribbon arch pedestrian bridge expected to be built along Binjiang Avenue, Shanghai, China. Human-induced vibration is an important factor that needs to be considered in the operation period of pedestrian bridges. However, there is a lack of research on this new structure's dynamic characteristics and vibration reduction measures. In this paper, the finite element (FE) model of the Wing-spread Bridge is firstly established, and the modal analysis is conducted based on the FE model. Subsequently, the maximum acceleration of each mode under pedestrian dynamic load is calculated. The result shows that the maximum acceleration of the first- order lateral bending mode exceeds the best comfortable indicator. Finally, two tuned mass dampers (TMD) are designed to be installed at the top of the arches, and the vibration amplitude of the bridge with TMD meets the requirements.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modal Analysis and TMD Design of the Wing-spread Bridge: A Pedestrian Bridge along the Binjiang Avenue, Shanghai
Wing-spread bridge is an innovative stress-ribbon arch pedestrian bridge expected to be built along Binjiang Avenue, Shanghai, China. Human-induced vibration is an important factor that needs to be considered in the operation period of pedestrian bridges. However, there is a lack of research on this new structure's dynamic characteristics and vibration reduction measures. In this paper, the finite element (FE) model of the Wing-spread Bridge is firstly established, and the modal analysis is conducted based on the FE model. Subsequently, the maximum acceleration of each mode under pedestrian dynamic load is calculated. The result shows that the maximum acceleration of the first- order lateral bending mode exceeds the best comfortable indicator. Finally, two tuned mass dampers (TMD) are designed to be installed at the top of the arches, and the vibration amplitude of the bridge with TMD meets the requirements.