上海滨江大道双联桥模态分析与TMD设计

Lanxin Luo, Ao Wang, Zhanhang Liu, Ye Xia, Limin Sun
{"title":"上海滨江大道双联桥模态分析与TMD设计","authors":"Lanxin Luo, Ao Wang, Zhanhang Liu, Ye Xia, Limin Sun","doi":"10.2749/nanjing.2022.0777","DOIUrl":null,"url":null,"abstract":"Wing-spread bridge is an innovative stress-ribbon arch pedestrian bridge expected to be built along Binjiang Avenue, Shanghai, China. Human-induced vibration is an important factor that needs to be considered in the operation period of pedestrian bridges. However, there is a lack of research on this new structure's dynamic characteristics and vibration reduction measures. In this paper, the finite element (FE) model of the Wing-spread Bridge is firstly established, and the modal analysis is conducted based on the FE model. Subsequently, the maximum acceleration of each mode under pedestrian dynamic load is calculated. The result shows that the maximum acceleration of the first- order lateral bending mode exceeds the best comfortable indicator. Finally, two tuned mass dampers (TMD) are designed to be installed at the top of the arches, and the vibration amplitude of the bridge with TMD meets the requirements.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Analysis and TMD Design of the Wing-spread Bridge: A Pedestrian Bridge along the Binjiang Avenue, Shanghai\",\"authors\":\"Lanxin Luo, Ao Wang, Zhanhang Liu, Ye Xia, Limin Sun\",\"doi\":\"10.2749/nanjing.2022.0777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wing-spread bridge is an innovative stress-ribbon arch pedestrian bridge expected to be built along Binjiang Avenue, Shanghai, China. Human-induced vibration is an important factor that needs to be considered in the operation period of pedestrian bridges. However, there is a lack of research on this new structure's dynamic characteristics and vibration reduction measures. In this paper, the finite element (FE) model of the Wing-spread Bridge is firstly established, and the modal analysis is conducted based on the FE model. Subsequently, the maximum acceleration of each mode under pedestrian dynamic load is calculated. The result shows that the maximum acceleration of the first- order lateral bending mode exceeds the best comfortable indicator. Finally, two tuned mass dampers (TMD) are designed to be installed at the top of the arches, and the vibration amplitude of the bridge with TMD meets the requirements.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

翼展桥是一座创新性的应力带拱桥,拟建于中国上海滨江大道。人为振动是人行天桥运行期间需要考虑的重要因素。然而,对这种新型结构的动力特性和减振措施的研究还比较缺乏。本文首先建立了翼展桥的有限元模型,并在此基础上进行了模态分析。然后,计算出行人动载下各模式的最大加速度。结果表明,一阶侧向弯曲模式的最大加速度超过了最佳舒适指标。最后,设计了两个调谐质量阻尼器(TMD)安装在拱桥顶部,使其振动幅值满足要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal Analysis and TMD Design of the Wing-spread Bridge: A Pedestrian Bridge along the Binjiang Avenue, Shanghai
Wing-spread bridge is an innovative stress-ribbon arch pedestrian bridge expected to be built along Binjiang Avenue, Shanghai, China. Human-induced vibration is an important factor that needs to be considered in the operation period of pedestrian bridges. However, there is a lack of research on this new structure's dynamic characteristics and vibration reduction measures. In this paper, the finite element (FE) model of the Wing-spread Bridge is firstly established, and the modal analysis is conducted based on the FE model. Subsequently, the maximum acceleration of each mode under pedestrian dynamic load is calculated. The result shows that the maximum acceleration of the first- order lateral bending mode exceeds the best comfortable indicator. Finally, two tuned mass dampers (TMD) are designed to be installed at the top of the arches, and the vibration amplitude of the bridge with TMD meets the requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信