多边形和相关动态Voronoi图中凸对象的最大位置

SCG '90 Pub Date : 1990-05-01 DOI:10.1145/98524.98575
Hiromi Aonuma, H. Imai, K. Imai, T. Tokuyama
{"title":"多边形和相关动态Voronoi图中凸对象的最大位置","authors":"Hiromi Aonuma, H. Imai, K. Imai, T. Tokuyama","doi":"10.1145/98524.98575","DOIUrl":null,"url":null,"abstract":"This paper considers the maximin placement of a convex polygon <italic>P</italic> inside a polygon <italic>Q</italic>, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that <italic>P</italic> can be placed inside <italic>Q</italic>, using translation and rotation, so that the minimum Euclidean distance between any point on <italic>P</italic> and any point on <italic>Q</italic> is maximized in <italic>&Ogr;</italic>(<italic>m</italic><supscrpt>4</supscrpt><italic>n λ</italic><subscrpt>16</subscrpt>(<italic>mn</italic>) log <italic>mn</italic>) time, where <italic>m</italic> and <italic>n</italic> are the numbers of edges of <italic>P</italic> and <italic>Q</italic>, respectively, and <italic>λ</italic><subscrpt>16</subscrpt>(<italic>N</italic>) is the maximum length of Davenport-Schinzel sequences on <italic>N</italic> alphabets of order 16. If only translation is allowed, the problem can be solved in <italic>&Ogr;</italic>(<italic>mn</italic> log <italic>mn</italic>) time. The problem of placing multiple translates of <italic>P</italic> inside <italic>Q</italic> in a maximum manner is also considered, and in connection with this problem the dynamic Voronoi diagram of <italic>&kgr;</italic> rigidly moving sets of <italic>n</italic> points is investigated. The combinatorial complexity of this canonical dynamic diagram for <italic>&kgr;n</italic> points is shown to be <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt>) and <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>3</supscrpt><italic>&kgr;</italic><supscrpt>4</supscrpt> log<supscrpt>*</supscrpt> <italic>&kgr;</italic>) for <italic>&kgr;</italic> = 2, 3 and <italic>&kgr;</italic> ≥ 4, respectively. Several related problems are also treated in a unified way.","PeriodicalId":113850,"journal":{"name":"SCG '90","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams\",\"authors\":\"Hiromi Aonuma, H. Imai, K. Imai, T. Tokuyama\",\"doi\":\"10.1145/98524.98575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the maximin placement of a convex polygon <italic>P</italic> inside a polygon <italic>Q</italic>, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that <italic>P</italic> can be placed inside <italic>Q</italic>, using translation and rotation, so that the minimum Euclidean distance between any point on <italic>P</italic> and any point on <italic>Q</italic> is maximized in <italic>&Ogr;</italic>(<italic>m</italic><supscrpt>4</supscrpt><italic>n λ</italic><subscrpt>16</subscrpt>(<italic>mn</italic>) log <italic>mn</italic>) time, where <italic>m</italic> and <italic>n</italic> are the numbers of edges of <italic>P</italic> and <italic>Q</italic>, respectively, and <italic>λ</italic><subscrpt>16</subscrpt>(<italic>N</italic>) is the maximum length of Davenport-Schinzel sequences on <italic>N</italic> alphabets of order 16. If only translation is allowed, the problem can be solved in <italic>&Ogr;</italic>(<italic>mn</italic> log <italic>mn</italic>) time. The problem of placing multiple translates of <italic>P</italic> inside <italic>Q</italic> in a maximum manner is also considered, and in connection with this problem the dynamic Voronoi diagram of <italic>&kgr;</italic> rigidly moving sets of <italic>n</italic> points is investigated. The combinatorial complexity of this canonical dynamic diagram for <italic>&kgr;n</italic> points is shown to be <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt>) and <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>3</supscrpt><italic>&kgr;</italic><supscrpt>4</supscrpt> log<supscrpt>*</supscrpt> <italic>&kgr;</italic>) for <italic>&kgr;</italic> = 2, 3 and <italic>&kgr;</italic> ≥ 4, respectively. Several related problems are also treated in a unified way.\",\"PeriodicalId\":113850,\"journal\":{\"name\":\"SCG '90\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCG '90\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/98524.98575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCG '90","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98524.98575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文考虑了凸多边形P在多边形Q内的最大位置,并引入了几种新的静态和动态Voronoi图来解决这一问题。证明了P可以通过平移和旋转放置在Q内,使得P上任意点与Q上任意点之间的最小欧氏距离在&Ogr;(m4n λ16(mn) log mn)时间内达到最大值,其中m和n分别为P和Q的边数,λ16(n)为n个16阶字母上的Davenport-Schinzel序列的最大长度。如果只允许平移,则可以在&Ogr;(mn log mn)时间内解决问题。本文还考虑了以最大方式将P的多个平移放置在Q内的问题,并与此问题联系起来,给出了&kgr;研究了n个点的刚性移动集。对于&kgr;n个点,正则动态图的组合复杂度为&Ogr;(n2)和&Ogr;(n3&kgr;4 log* &kgr;)= 2,3 and &kgr;分别≥4。几个相关问题也统一处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams
This paper considers the maximin placement of a convex polygon P inside a polygon Q, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that P can be placed inside Q, using translation and rotation, so that the minimum Euclidean distance between any point on P and any point on Q is maximized in &Ogr;(m4n λ16(mn) log mn) time, where m and n are the numbers of edges of P and Q, respectively, and λ16(N) is the maximum length of Davenport-Schinzel sequences on N alphabets of order 16. If only translation is allowed, the problem can be solved in &Ogr;(mn log mn) time. The problem of placing multiple translates of P inside Q in a maximum manner is also considered, and in connection with this problem the dynamic Voronoi diagram of &kgr; rigidly moving sets of n points is investigated. The combinatorial complexity of this canonical dynamic diagram for &kgr;n points is shown to be &Ogr;(n2) and &Ogr;(n3&kgr;4 log* &kgr;) for &kgr; = 2, 3 and &kgr; ≥ 4, respectively. Several related problems are also treated in a unified way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信