一种监控视频异常活动提取与总结的新方法

Yihao Zhang, Weiyao Lin, Guangwei Zhang, Chuanfei Luo, Dong Jiang, Chunlian Yao
{"title":"一种监控视频异常活动提取与总结的新方法","authors":"Yihao Zhang, Weiyao Lin, Guangwei Zhang, Chuanfei Luo, Dong Jiang, Chunlian Yao","doi":"10.1109/ICMEW.2014.6890537","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach to detect abnormal activities in surveillance videos and create suitable summary videos accordingly. The proposed approach first introduces a blob sequence optimization process which integrates spatial, temporal, size, and motion correlation among objects to extract suitable abnormal blob sequences. With this process, blob extraction errors due to occlusion or background interferences can be effectively avoided. Then, we also propose an abnormality-type-based method which creates short-period summary videos for long-period input surveillance videos by properly arranging abnormal blob sequences according to their activity types. Experimental results show that our proposed approach can effectively create satisfying summary videos from input surveillance videos.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A new approach for extracting and summarizing abnormal activities in surveillance videos\",\"authors\":\"Yihao Zhang, Weiyao Lin, Guangwei Zhang, Chuanfei Luo, Dong Jiang, Chunlian Yao\",\"doi\":\"10.1109/ICMEW.2014.6890537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach to detect abnormal activities in surveillance videos and create suitable summary videos accordingly. The proposed approach first introduces a blob sequence optimization process which integrates spatial, temporal, size, and motion correlation among objects to extract suitable abnormal blob sequences. With this process, blob extraction errors due to occlusion or background interferences can be effectively avoided. Then, we also propose an abnormality-type-based method which creates short-period summary videos for long-period input surveillance videos by properly arranging abnormal blob sequences according to their activity types. Experimental results show that our proposed approach can effectively create satisfying summary videos from input surveillance videos.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种新的方法来检测监控视频中的异常活动,并相应地创建合适的摘要视频。该方法首先引入了一种结合空间、时间、大小和目标间运动相关性的斑点序列优化过程,以提取合适的异常斑点序列。该方法可以有效地避免由于遮挡或背景干扰而产生的斑点提取误差。然后,我们还提出了一种基于异常类型的方法,根据异常斑点序列的活动类型合理排列异常斑点序列,为长周期输入监控视频创建短周期总结视频。实验结果表明,该方法可以有效地从输入的监控视频中生成令人满意的摘要视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach for extracting and summarizing abnormal activities in surveillance videos
In this paper, we propose a new approach to detect abnormal activities in surveillance videos and create suitable summary videos accordingly. The proposed approach first introduces a blob sequence optimization process which integrates spatial, temporal, size, and motion correlation among objects to extract suitable abnormal blob sequences. With this process, blob extraction errors due to occlusion or background interferences can be effectively avoided. Then, we also propose an abnormality-type-based method which creates short-period summary videos for long-period input surveillance videos by properly arranging abnormal blob sequences according to their activity types. Experimental results show that our proposed approach can effectively create satisfying summary videos from input surveillance videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信