{"title":"风电场多层通信网络体系结构","authors":"Shahid Hussain, Young-Chon Kim","doi":"10.1109/CAMAD.2014.7033215","DOIUrl":null,"url":null,"abstract":"Wind is a sustainable renewable energy source, which has recently gained high popularity among the renewable energy sources. The high maintenance and repair cost of wind turbine needs real-time monitoring and control through networks. Network communication infrastructures play important roles for the real-time monitoring and control of wind power farms because these farms are located at remote and harsh environment sites. This paper proposes multilayer communication network architecture for monitoring and controlling of wind power farms which consists of wind power farm layer, local control center layer, regional control center layer, central control center layer and neighbor control center layer. Based on the logical node concept of IEC 61400-25 standard, wind turbine is modeled and simulated by four different information including analogue measurements, status information, protection and control information, and meteorological mast information through OPNET modular. The performance of the proposed network architecture is evaluated in terms of link bandwidth and latency.","PeriodicalId":111472,"journal":{"name":"2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multilayer communication network architecture for wind power farm\",\"authors\":\"Shahid Hussain, Young-Chon Kim\",\"doi\":\"10.1109/CAMAD.2014.7033215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind is a sustainable renewable energy source, which has recently gained high popularity among the renewable energy sources. The high maintenance and repair cost of wind turbine needs real-time monitoring and control through networks. Network communication infrastructures play important roles for the real-time monitoring and control of wind power farms because these farms are located at remote and harsh environment sites. This paper proposes multilayer communication network architecture for monitoring and controlling of wind power farms which consists of wind power farm layer, local control center layer, regional control center layer, central control center layer and neighbor control center layer. Based on the logical node concept of IEC 61400-25 standard, wind turbine is modeled and simulated by four different information including analogue measurements, status information, protection and control information, and meteorological mast information through OPNET modular. The performance of the proposed network architecture is evaluated in terms of link bandwidth and latency.\",\"PeriodicalId\":111472,\"journal\":{\"name\":\"2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD.2014.7033215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD.2014.7033215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilayer communication network architecture for wind power farm
Wind is a sustainable renewable energy source, which has recently gained high popularity among the renewable energy sources. The high maintenance and repair cost of wind turbine needs real-time monitoring and control through networks. Network communication infrastructures play important roles for the real-time monitoring and control of wind power farms because these farms are located at remote and harsh environment sites. This paper proposes multilayer communication network architecture for monitoring and controlling of wind power farms which consists of wind power farm layer, local control center layer, regional control center layer, central control center layer and neighbor control center layer. Based on the logical node concept of IEC 61400-25 standard, wind turbine is modeled and simulated by four different information including analogue measurements, status information, protection and control information, and meteorological mast information through OPNET modular. The performance of the proposed network architecture is evaluated in terms of link bandwidth and latency.