一般椭圆型bvp的Coiflet-Galerkin方法的快速收敛性

H. Akbari
{"title":"一般椭圆型bvp的Coiflet-Galerkin方法的快速收敛性","authors":"H. Akbari","doi":"10.2478/amcs-2013-0002","DOIUrl":null,"url":null,"abstract":"We consider a general elliptic Robin boundary value problem. Using orthogonal Coifman wavelets (Coiflets) as basis functions in the Galerkin method, we prove that the rate of convergence of an approximate solution to the exact one is O(2 −nN ) in the H1 norm, where n is the level of approximation and N is the Coiflet degree. The Galerkin method needs to evaluate a lot of complicated integrals. We present a structured approach for fast and effective evaluation of these integrals via trivariate connection coefficients. Due to the fast convergence rate, very good approximations are found at low levels and with low Coiflet degrees, hence the size of corresponding linear systems is small. Numerical experiments confirm these claims.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs\",\"authors\":\"H. Akbari\",\"doi\":\"10.2478/amcs-2013-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a general elliptic Robin boundary value problem. Using orthogonal Coifman wavelets (Coiflets) as basis functions in the Galerkin method, we prove that the rate of convergence of an approximate solution to the exact one is O(2 −nN ) in the H1 norm, where n is the level of approximation and N is the Coiflet degree. The Galerkin method needs to evaluate a lot of complicated integrals. We present a structured approach for fast and effective evaluation of these integrals via trivariate connection coefficients. Due to the fast convergence rate, very good approximations are found at low levels and with low Coiflet degrees, hence the size of corresponding linear systems is small. Numerical experiments confirm these claims.\",\"PeriodicalId\":253470,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Sciences\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amcs-2013-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑一类一般椭圆型Robin边值问题。利用正交Coifman小波(Coiflet)作为Galerkin方法的基函数,证明了在H1范数下精确解的近似解的收敛速率为O(2−nN),其中n为近似水平,n为Coiflet度。伽辽金法需要计算很多复杂的积分。我们提出了一种结构化的方法,通过三元连接系数快速有效地计算这些积分。由于收敛速度快,在低水平和低Coiflet度下可以得到很好的近似,因此相应的线性系统的大小很小。数值实验证实了这些说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs
We consider a general elliptic Robin boundary value problem. Using orthogonal Coifman wavelets (Coiflets) as basis functions in the Galerkin method, we prove that the rate of convergence of an approximate solution to the exact one is O(2 −nN ) in the H1 norm, where n is the level of approximation and N is the Coiflet degree. The Galerkin method needs to evaluate a lot of complicated integrals. We present a structured approach for fast and effective evaluation of these integrals via trivariate connection coefficients. Due to the fast convergence rate, very good approximations are found at low levels and with low Coiflet degrees, hence the size of corresponding linear systems is small. Numerical experiments confirm these claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信