在多对数时间内的高效矩阵反演

P. Sanders, Jochen Speck, Raoul Steffen
{"title":"在多对数时间内的高效矩阵反演","authors":"P. Sanders, Jochen Speck, Raoul Steffen","doi":"10.1145/2486159.2486173","DOIUrl":null,"url":null,"abstract":"We present an algorithm for matrix inversion that combines the practical requirement of an optimal number of arithmetic operations and the theoretical goal of a polylogarithmic critical path length. The algorithm reduces inversion to matrix multiplication. It uses Strassen's recursion scheme but on the critical path, it breaks the recursion early switching to an asymptotically inefficient yet fast use of Newton's method. We also show that the algorithm is numerically stable. Overall, we get a candidate for a massively parallel algorithm that scales to exascale systems even on relatively small inputs. Preliminary experiments on multicore machines give the surprising result that even on such moderately parallel machines the algorithm outperforms Intel's Math Kernel Library and that Strassen's algorithm seems to be numerically more stable than one might expect.","PeriodicalId":353007,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Work-efficient matrix inversion in polylogarithmic time\",\"authors\":\"P. Sanders, Jochen Speck, Raoul Steffen\",\"doi\":\"10.1145/2486159.2486173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for matrix inversion that combines the practical requirement of an optimal number of arithmetic operations and the theoretical goal of a polylogarithmic critical path length. The algorithm reduces inversion to matrix multiplication. It uses Strassen's recursion scheme but on the critical path, it breaks the recursion early switching to an asymptotically inefficient yet fast use of Newton's method. We also show that the algorithm is numerically stable. Overall, we get a candidate for a massively parallel algorithm that scales to exascale systems even on relatively small inputs. Preliminary experiments on multicore machines give the surprising result that even on such moderately parallel machines the algorithm outperforms Intel's Math Kernel Library and that Strassen's algorithm seems to be numerically more stable than one might expect.\",\"PeriodicalId\":353007,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2486159.2486173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486159.2486173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种矩阵反演算法,该算法结合了最优算术运算数的实际要求和多对数关键路径长度的理论目标。该算法将反演简化为矩阵乘法。它使用Strassen的递归格式,但在关键路径上,它提前打破递归,转而使用渐近低效但快速的牛顿方法。结果表明,该算法在数值上是稳定的。总的来说,我们得到了一个候选的大规模并行算法,即使在相对较小的输入上也可以扩展到百亿亿级系统。在多核机器上进行的初步实验得出了令人惊讶的结果,即使在这种中等并行的机器上,该算法的性能也优于英特尔的数学内核库,而且Strassen的算法在数值上似乎比人们想象的要稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-efficient matrix inversion in polylogarithmic time
We present an algorithm for matrix inversion that combines the practical requirement of an optimal number of arithmetic operations and the theoretical goal of a polylogarithmic critical path length. The algorithm reduces inversion to matrix multiplication. It uses Strassen's recursion scheme but on the critical path, it breaks the recursion early switching to an asymptotically inefficient yet fast use of Newton's method. We also show that the algorithm is numerically stable. Overall, we get a candidate for a massively parallel algorithm that scales to exascale systems even on relatively small inputs. Preliminary experiments on multicore machines give the surprising result that even on such moderately parallel machines the algorithm outperforms Intel's Math Kernel Library and that Strassen's algorithm seems to be numerically more stable than one might expect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信