提出的推荐系统与实际数据的比较

L. Kovavisaruch, T. Sanpechuda
{"title":"提出的推荐系统与实际数据的比较","authors":"L. Kovavisaruch, T. Sanpechuda","doi":"10.1109/iSAI-NLP54397.2021.9678151","DOIUrl":null,"url":null,"abstract":"Recommendation systems for the museum have been active in the past decade. It used to be a difficult task to make the personalized recommended list for museum-goer. However, with the current technology, research can provide the list for visitors via technology such as mobile applications. We have proposed a recommendation system based on social filtering and statistical methods in the previous paper. This paper applies the F1-score to evaluate our recommendation methods on the actual visitor loggers from Chao sampradaya national museum. We compare the social filtering method with the statistical method and benchmark with the random recommendation. In comparison, the statistical method gives the same result as social filtering when the time is limited. The longer time the visitor spends in the museum, the better result from the social filtering. However, in terms of calculation complexity, the statistical method outperforms social filtering.","PeriodicalId":339826,"journal":{"name":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The comparison of the proposed recommended system with actual data\",\"authors\":\"L. Kovavisaruch, T. Sanpechuda\",\"doi\":\"10.1109/iSAI-NLP54397.2021.9678151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems for the museum have been active in the past decade. It used to be a difficult task to make the personalized recommended list for museum-goer. However, with the current technology, research can provide the list for visitors via technology such as mobile applications. We have proposed a recommendation system based on social filtering and statistical methods in the previous paper. This paper applies the F1-score to evaluate our recommendation methods on the actual visitor loggers from Chao sampradaya national museum. We compare the social filtering method with the statistical method and benchmark with the random recommendation. In comparison, the statistical method gives the same result as social filtering when the time is limited. The longer time the visitor spends in the museum, the better result from the social filtering. However, in terms of calculation complexity, the statistical method outperforms social filtering.\",\"PeriodicalId\":339826,\"journal\":{\"name\":\"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP54397.2021.9678151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP54397.2021.9678151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

博物馆的推荐系统在过去十年一直很活跃。过去,为参观博物馆的人制作个性化的推荐名单是一项艰巨的任务。然而,以目前的技术,研究可以通过诸如移动应用程序等技术为访问者提供列表。我们在之前的文章中提出了一种基于社会过滤和统计方法的推荐系统。本文运用f1分值对我们的推荐方法对Chao sampradaya国立博物馆的实际游客记录者进行了评价。将社会过滤方法与统计方法进行比较,将基准测试方法与随机推荐方法进行比较。相比之下,在时间有限的情况下,统计方法得到的结果与社会过滤相同。参观者在博物馆停留的时间越长,社会过滤效果越好。然而,在计算复杂度方面,统计方法优于社会过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The comparison of the proposed recommended system with actual data
Recommendation systems for the museum have been active in the past decade. It used to be a difficult task to make the personalized recommended list for museum-goer. However, with the current technology, research can provide the list for visitors via technology such as mobile applications. We have proposed a recommendation system based on social filtering and statistical methods in the previous paper. This paper applies the F1-score to evaluate our recommendation methods on the actual visitor loggers from Chao sampradaya national museum. We compare the social filtering method with the statistical method and benchmark with the random recommendation. In comparison, the statistical method gives the same result as social filtering when the time is limited. The longer time the visitor spends in the museum, the better result from the social filtering. However, in terms of calculation complexity, the statistical method outperforms social filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信