博客标签推荐方法的比较研究

Li-Juan Tang, Cheng-Zhi Zhang
{"title":"博客标签推荐方法的比较研究","authors":"Li-Juan Tang, Cheng-Zhi Zhang","doi":"10.1109/ICMLC.2012.6359689","DOIUrl":null,"url":null,"abstract":"Tags are products of Web 2.0. They play an important role in user modeling, friends or information recommendation. In this paper, keywords from blogs are extracted by using TextRank and TF*IDF algorithms respectively. The keywords are used to tag recommendation. Experiment results show that the performance of these two algorithms is very closely.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of tags recommendation for blogs: A comparative study\",\"authors\":\"Li-Juan Tang, Cheng-Zhi Zhang\",\"doi\":\"10.1109/ICMLC.2012.6359689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tags are products of Web 2.0. They play an important role in user modeling, friends or information recommendation. In this paper, keywords from blogs are extracted by using TextRank and TF*IDF algorithms respectively. The keywords are used to tag recommendation. Experiment results show that the performance of these two algorithms is very closely.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6359689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标签是Web 2.0的产物。它们在用户建模、好友推荐或信息推荐中发挥着重要作用。本文分别使用TextRank和TF*IDF算法提取博客关键词。关键词用于标记推荐。实验结果表明,这两种算法的性能非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method of tags recommendation for blogs: A comparative study
Tags are products of Web 2.0. They play an important role in user modeling, friends or information recommendation. In this paper, keywords from blogs are extracted by using TextRank and TF*IDF algorithms respectively. The keywords are used to tag recommendation. Experiment results show that the performance of these two algorithms is very closely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信