110°C时5级软铝电缆的电容量的计算和测量

Fernando Agustin, Akhtar Kalam, A. Zayegh
{"title":"110°C时5级软铝电缆的电容量的计算和测量","authors":"Fernando Agustin, Akhtar Kalam, A. Zayegh","doi":"10.11591/IJAPE.V10.I3.PP183-192","DOIUrl":null,"url":null,"abstract":"Class 5 flexible aluminum conductors are not common in cable manufacturing industry due to insufficient study on cable joints and connectors. The table of ampacities for aluminum conductors at 110 °C in AS/NZS3008.1.1 standards are also not available as a reference guide for electrical system designers that restricts the installation of aluminum low voltage (LV) cabling system to operate at 90 °C of conductor maximum operating temperature where 110 °C cables are permitted in Australia. In this paper, the cable ampacities of various LV Class 5 flexible aluminum cables at maximum operating temperature of 110 °C are calculated using IEC60287 and AS/NZ3008.1.1 standards. The calculated ampacities from the formula presented in clause 4.4. of AS/NZS3008.1.1 are verified by using the 6kA inductive current generator to determine the suitability for use. The joint temperature between cable and shear bolt mechanical connectors are simultaneoulsy simulated using the calculated ampacities to determine the suitability of mechanical shear bolt connectors when the coefficient of thermal expansion of material is considered. The observed differences between the calculated and measured values demonstrate the relevance of formula used in determining the current ampacity at 110 °C conductor temperature in free air.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"339 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation and measurement of ampacity for class 5 flexible aluminum cable at 110 °C\",\"authors\":\"Fernando Agustin, Akhtar Kalam, A. Zayegh\",\"doi\":\"10.11591/IJAPE.V10.I3.PP183-192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class 5 flexible aluminum conductors are not common in cable manufacturing industry due to insufficient study on cable joints and connectors. The table of ampacities for aluminum conductors at 110 °C in AS/NZS3008.1.1 standards are also not available as a reference guide for electrical system designers that restricts the installation of aluminum low voltage (LV) cabling system to operate at 90 °C of conductor maximum operating temperature where 110 °C cables are permitted in Australia. In this paper, the cable ampacities of various LV Class 5 flexible aluminum cables at maximum operating temperature of 110 °C are calculated using IEC60287 and AS/NZ3008.1.1 standards. The calculated ampacities from the formula presented in clause 4.4. of AS/NZS3008.1.1 are verified by using the 6kA inductive current generator to determine the suitability for use. The joint temperature between cable and shear bolt mechanical connectors are simultaneoulsy simulated using the calculated ampacities to determine the suitability of mechanical shear bolt connectors when the coefficient of thermal expansion of material is considered. The observed differences between the calculated and measured values demonstrate the relevance of formula used in determining the current ampacity at 110 °C conductor temperature in free air.\",\"PeriodicalId\":280098,\"journal\":{\"name\":\"International Journal of Applied Power Engineering\",\"volume\":\"339 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJAPE.V10.I3.PP183-192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJAPE.V10.I3.PP183-192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于对电缆接头和连接器的研究不够,5级软铝导体在电缆制造业中并不常见。AS/NZS3008.1.1标准中铝导体在110°C下的容量表也不能作为电气系统设计人员的参考指南,该标准限制了铝低压(LV)布线系统的安装,在澳大利亚允许110°C电缆的情况下,导体的最高工作温度为90°C。本文采用IEC60287和AS/NZ3008.1.1标准计算了各种低压5级软铝电缆在最高工作温度为110℃时的电缆容量。根据第4.4条给出的公式计算出的容量。通过使用6kA电感电流发生器来验证AS/NZS3008.1.1的适用性。在考虑材料热膨胀系数的情况下,利用计算得到的容量对电缆与剪切螺栓机械连接件的接合温度进行了模拟,以确定剪切螺栓机械连接件的适用性。计算值和实测值之间观察到的差异证明了在自由空气中110°C导体温度下确定电流电流的公式的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation and measurement of ampacity for class 5 flexible aluminum cable at 110 °C
Class 5 flexible aluminum conductors are not common in cable manufacturing industry due to insufficient study on cable joints and connectors. The table of ampacities for aluminum conductors at 110 °C in AS/NZS3008.1.1 standards are also not available as a reference guide for electrical system designers that restricts the installation of aluminum low voltage (LV) cabling system to operate at 90 °C of conductor maximum operating temperature where 110 °C cables are permitted in Australia. In this paper, the cable ampacities of various LV Class 5 flexible aluminum cables at maximum operating temperature of 110 °C are calculated using IEC60287 and AS/NZ3008.1.1 standards. The calculated ampacities from the formula presented in clause 4.4. of AS/NZS3008.1.1 are verified by using the 6kA inductive current generator to determine the suitability for use. The joint temperature between cable and shear bolt mechanical connectors are simultaneoulsy simulated using the calculated ampacities to determine the suitability of mechanical shear bolt connectors when the coefficient of thermal expansion of material is considered. The observed differences between the calculated and measured values demonstrate the relevance of formula used in determining the current ampacity at 110 °C conductor temperature in free air.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信