基于遗传算法的图像分段隐写

M. Nosrati, A. Hanani, Ronak Karimi
{"title":"基于遗传算法的图像分段隐写","authors":"M. Nosrati, A. Hanani, Ronak Karimi","doi":"10.1109/ACCT.2015.57","DOIUrl":null,"url":null,"abstract":"This study offers a heuristic genetic algorithm based method for message hiding in a carrier image. This approach focuses on the \"before embedding hiding techniques\" by trying to find appropriate places in carrier image to embed the message with the least changes of bits. Due to it, segmentation is done in order to convert the LSBs and message strings to the sets of blocks for participation in genetic algorithm. After finding the right places, secret message blocks are embedded and a key file is created to make the message extraction available by providing the data addresses. Experimental results with the least changes in image histogram (by the policy of setting an appropriate amount for the length of block bits) show the efficiency of current method.","PeriodicalId":351783,"journal":{"name":"2015 Fifth International Conference on Advanced Computing & Communication Technologies","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Steganography in Image Segments Using Genetic Algorithm\",\"authors\":\"M. Nosrati, A. Hanani, Ronak Karimi\",\"doi\":\"10.1109/ACCT.2015.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study offers a heuristic genetic algorithm based method for message hiding in a carrier image. This approach focuses on the \\\"before embedding hiding techniques\\\" by trying to find appropriate places in carrier image to embed the message with the least changes of bits. Due to it, segmentation is done in order to convert the LSBs and message strings to the sets of blocks for participation in genetic algorithm. After finding the right places, secret message blocks are embedded and a key file is created to make the message extraction available by providing the data addresses. Experimental results with the least changes in image histogram (by the policy of setting an appropriate amount for the length of block bits) show the efficiency of current method.\",\"PeriodicalId\":351783,\"journal\":{\"name\":\"2015 Fifth International Conference on Advanced Computing & Communication Technologies\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fifth International Conference on Advanced Computing & Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCT.2015.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Advanced Computing & Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCT.2015.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

提出了一种基于启发式遗传算法的载体图像信息隐藏方法。该方法着重于“嵌入前隐藏技术”,试图在载体图像中找到合适的位置,以最小的比特变化嵌入信息。因此,分割是为了将lsb和消息字符串转换为参与遗传算法的块集。找到正确的位置后,将嵌入秘密消息块,并创建一个密钥文件,以便通过提供数据地址实现消息提取。实验结果表明,在图像直方图变化最小的情况下(通过设置适当的块位长度的策略),该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steganography in Image Segments Using Genetic Algorithm
This study offers a heuristic genetic algorithm based method for message hiding in a carrier image. This approach focuses on the "before embedding hiding techniques" by trying to find appropriate places in carrier image to embed the message with the least changes of bits. Due to it, segmentation is done in order to convert the LSBs and message strings to the sets of blocks for participation in genetic algorithm. After finding the right places, secret message blocks are embedded and a key file is created to make the message extraction available by providing the data addresses. Experimental results with the least changes in image histogram (by the policy of setting an appropriate amount for the length of block bits) show the efficiency of current method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信