唇腭裂患者鼻音异常的模式识别

Roger Gomez Nieto, J. I. Marin-Hurtado, Luis Miguel Capacho-Valbuena, Alexander Amaya Suarez, Elkyn Alexander Belalcazar Bolanos
{"title":"唇腭裂患者鼻音异常的模式识别","authors":"Roger Gomez Nieto, J. I. Marin-Hurtado, Luis Miguel Capacho-Valbuena, Alexander Amaya Suarez, Elkyn Alexander Belalcazar Bolanos","doi":"10.1109/STSIVA.2014.7010187","DOIUrl":null,"url":null,"abstract":"The Cleft and Lip Palate (CLP) is a malformation with high recurrence in Colombia, which affects the ability of the phonation system, making difficult the effective communication of the patient. This research seeks to find patterns that enable to detect hypernasality without using invasive diagnostic methods. We performed an analysis of a large range of acoustic features to identify those capable of discriminating hypernasality. The analyzed features include: Teager energy operator (TEO), linear predictive coding (LPC), Mel Frequency Cepstral Coefficients (MFCC), Pitch, Jitter, Shimmer, and the first three formants together with the bandwidth of the first formant. With the correct configuration is achieved discriminant patterns classify 99 percent of patients hypernasal of the database with a false positive rate of less than 1 percent of healthy patients, which are promising results as a starting point for creating a tool for automatic noninvasive detection of hypernasality.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate\",\"authors\":\"Roger Gomez Nieto, J. I. Marin-Hurtado, Luis Miguel Capacho-Valbuena, Alexander Amaya Suarez, Elkyn Alexander Belalcazar Bolanos\",\"doi\":\"10.1109/STSIVA.2014.7010187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cleft and Lip Palate (CLP) is a malformation with high recurrence in Colombia, which affects the ability of the phonation system, making difficult the effective communication of the patient. This research seeks to find patterns that enable to detect hypernasality without using invasive diagnostic methods. We performed an analysis of a large range of acoustic features to identify those capable of discriminating hypernasality. The analyzed features include: Teager energy operator (TEO), linear predictive coding (LPC), Mel Frequency Cepstral Coefficients (MFCC), Pitch, Jitter, Shimmer, and the first three formants together with the bandwidth of the first formant. With the correct configuration is achieved discriminant patterns classify 99 percent of patients hypernasal of the database with a false positive rate of less than 1 percent of healthy patients, which are promising results as a starting point for creating a tool for automatic noninvasive detection of hypernasality.\",\"PeriodicalId\":114554,\"journal\":{\"name\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2014.7010187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

唇腭裂(Cleft and Lip Palate, CLP)是哥伦比亚一种复发率很高的畸形,它影响了发声系统的能力,使患者难以进行有效的沟通。本研究旨在寻找不使用侵入性诊断方法即可检测鼻音亢进的模式。我们进行了一个大范围的声学特征的分析,以确定那些能够区分高鼻音。分析的特征包括:Teager能量算子(TEO)、线性预测编码(LPC)、Mel频率倒谱系数(MFCC)、基音、抖动、闪烁、前三个共振峰以及第一共振峰的带宽。通过正确的配置,鉴别模式将数据库中99%的高鼻窦炎患者与不到1%的健康患者进行了分类,这是一个有希望的结果,可以作为创建自动无创检测高鼻窦炎工具的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate
The Cleft and Lip Palate (CLP) is a malformation with high recurrence in Colombia, which affects the ability of the phonation system, making difficult the effective communication of the patient. This research seeks to find patterns that enable to detect hypernasality without using invasive diagnostic methods. We performed an analysis of a large range of acoustic features to identify those capable of discriminating hypernasality. The analyzed features include: Teager energy operator (TEO), linear predictive coding (LPC), Mel Frequency Cepstral Coefficients (MFCC), Pitch, Jitter, Shimmer, and the first three formants together with the bandwidth of the first formant. With the correct configuration is achieved discriminant patterns classify 99 percent of patients hypernasal of the database with a false positive rate of less than 1 percent of healthy patients, which are promising results as a starting point for creating a tool for automatic noninvasive detection of hypernasality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信