区间值数据的最小学习机

Diêgo Farias de Oliveira, Nykolas Mayko Maia Barbosa, Alisson Sampaio Carvalho de Alencar, João Paulo Pordeus Gomes, Leonardo Ramos Rodrigues
{"title":"区间值数据的最小学习机","authors":"Diêgo Farias de Oliveira, Nykolas Mayko Maia Barbosa, Alisson Sampaio Carvalho de Alencar, João Paulo Pordeus Gomes, Leonardo Ramos Rodrigues","doi":"10.1109/bracis.2018.00040","DOIUrl":null,"url":null,"abstract":"Solving regression problems with interval-valued datasets is a challenging task that may arise in many real world applications. Motivated by that fact, many researchers have proposed nonlinear regression methods to handle interval-valued data in recent years. In this paper, we propose two variants of the Minimal Learning Machine (MLM) for interval-valued data. The choice of MLM is explained by its remarkable performance in many applications and the need of a single hyperparameter definition. We present a performance comparison between our methods and five benchmark nonlinear regression methods. The proposed methods presented competitive results.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Learning Machine for Interval-Valued Data\",\"authors\":\"Diêgo Farias de Oliveira, Nykolas Mayko Maia Barbosa, Alisson Sampaio Carvalho de Alencar, João Paulo Pordeus Gomes, Leonardo Ramos Rodrigues\",\"doi\":\"10.1109/bracis.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving regression problems with interval-valued datasets is a challenging task that may arise in many real world applications. Motivated by that fact, many researchers have proposed nonlinear regression methods to handle interval-valued data in recent years. In this paper, we propose two variants of the Minimal Learning Machine (MLM) for interval-valued data. The choice of MLM is explained by its remarkable performance in many applications and the need of a single hyperparameter definition. We present a performance comparison between our methods and five benchmark nonlinear regression methods. The proposed methods presented competitive results.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/bracis.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bracis.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决区间值数据集的回归问题是一项具有挑战性的任务,可能在许多实际应用中出现。受此启发,近年来许多研究者提出了非线性回归方法来处理区间值数据。在本文中,我们提出了区间值数据的最小学习机(MLM)的两个变体。选择MLM的原因是它在许多应用中的卓越性能和对单一超参数定义的需求。我们将我们的方法与五种基准非线性回归方法进行了性能比较。提出的方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Learning Machine for Interval-Valued Data
Solving regression problems with interval-valued datasets is a challenging task that may arise in many real world applications. Motivated by that fact, many researchers have proposed nonlinear regression methods to handle interval-valued data in recent years. In this paper, we propose two variants of the Minimal Learning Machine (MLM) for interval-valued data. The choice of MLM is explained by its remarkable performance in many applications and the need of a single hyperparameter definition. We present a performance comparison between our methods and five benchmark nonlinear regression methods. The proposed methods presented competitive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信