C. Haesemeyer, Charles A. Weibel
{"title":"Relation to Beilinson-Lichtenbaum","authors":"C. Haesemeyer, Charles A. Weibel","doi":"10.23943/princeton/9780691191041.003.0002","DOIUrl":null,"url":null,"abstract":"This chapter show how the Beilinson–Lichtenbaum condition is equivalent to the assertion that the norm residue is an isomorphism. A diagram featuring this proof is also included. The chapter first proves the reductions introduced in the previous chapter, BL(n) and H90(n), arguing that if BL(n) holds then BL(n − 1) holds and that H90(n) implies H90(n − 1). Next, the chapter turns to the cohomology of singular varieties, cohomology with supports, and rationally contractible presheaves. From there, it argues that Bloch–Kato implies Beilinson–Lichtenbaum and concludes the theorems by proving that H90(n) implies BL(n). The chapter concludes with some historical notes.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691191041.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章说明了Beilinson-Lichtenbaum条件如何等价于范数剩余是同构的断言。还包括了一个证明该证明的图表。本章首先证明了前一章所介绍的约简BL(n)和H90(n),论证了如果BL(n)成立,则BL(n−1)成立,并且H90(n)暗示了H90(n−1)。接着,讨论了奇异变异的上同调,与支撑物的上同调,以及合理可缩的前轴。在此基础上,论证Bloch-Kato暗含Beilinson-Lichtenbaum,并通过证明H90(n)暗含BL(n)来总结定理。这一章以一些历史注释结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation to Beilinson-Lichtenbaum
This chapter show how the Beilinson–Lichtenbaum condition is equivalent to the assertion that the norm residue is an isomorphism. A diagram featuring this proof is also included. The chapter first proves the reductions introduced in the previous chapter, BL(n) and H90(n), arguing that if BL(n) holds then BL(n − 1) holds and that H90(n) implies H90(n − 1). Next, the chapter turns to the cohomology of singular varieties, cohomology with supports, and rationally contractible presheaves. From there, it argues that Bloch–Kato implies Beilinson–Lichtenbaum and concludes the theorems by proving that H90(n) implies BL(n). The chapter concludes with some historical notes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信