M. Yusop, Y. Oladosu, A. R. Harun, A. Ramli, Ghazali Hussin, M. Ismail, N. Abdullah
{"title":"马来西亚多地离子束诱变水稻株系的突变技术及基因型-环境互作对产量的影响","authors":"M. Yusop, Y. Oladosu, A. R. Harun, A. Ramli, Ghazali Hussin, M. Ismail, N. Abdullah","doi":"10.1079/9781789249095.0023","DOIUrl":null,"url":null,"abstract":"Abstract\n Genotype evaluation for stability and high yield in rice is an important factor for sustainable rice production and food security. These evaluations are essential, especially when the breeding objective is to release rice with high yields, adaptability and stability for commercial cultivation. To achieve this objective, this study was carried out to select high-yielding rice genotypes induced by ion beam irradiation. Seeds of the rice variety 'MR219' were subjected to different doses of 320 MeV carbon-ion beam irradiation to determine the optimum dose to produce high mutant frequency and spectrum. The optimum dose was 60 Gy. After several cycles of selection and fixation between 2009 and 2014 (M0-M6), six prospective lines with desirable characters were selected at the M6 generation. The selected mutant lines along with other mutant varieties were then tested at five locations in two planting seasons to select high-yielding and stable genotypes. The experiment was conducted in a randomized complete block design with three replications across the locations and seasons. The pooled analysis of variance revealed highly significant differences (p ≤ 0.01, 0.05) among genotypes, among locations and among genotypes by location by season (G×L×S interaction) for the yield traits except for seasons and genotype by season (G×S interaction). Based on univariate and multivariate stability parameters, rice genotypes were classified into three main categories. The first group comprised genotypes with high yield stability along with high yield per hectare. These genotypes include ML4 and ML6 and are widely adapted to diverse environmental conditions. One line exhibited high yield per hectare but low stability; this genotype (ML9) is suitable for specific environments. The last group had low yield per hectare and high stability and included 'MR220', 'Binadhan4' and 'Binadhan7'. This final group is more suitable for breeding specific traits or perhaps has yield component compensation. Hence, rice mutant lines ML4 and ML6 were recommended for commercial cultivation in Malaysia.","PeriodicalId":287197,"journal":{"name":"Mutation breeding, genetic diversity and crop adaptation to climate change","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of mutation techniques and genotype × environment interaction for grain yield in ion beam induced mutant rice lines tested in multiple locations in Malaysia.\",\"authors\":\"M. Yusop, Y. Oladosu, A. R. Harun, A. Ramli, Ghazali Hussin, M. Ismail, N. Abdullah\",\"doi\":\"10.1079/9781789249095.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n Genotype evaluation for stability and high yield in rice is an important factor for sustainable rice production and food security. These evaluations are essential, especially when the breeding objective is to release rice with high yields, adaptability and stability for commercial cultivation. To achieve this objective, this study was carried out to select high-yielding rice genotypes induced by ion beam irradiation. Seeds of the rice variety 'MR219' were subjected to different doses of 320 MeV carbon-ion beam irradiation to determine the optimum dose to produce high mutant frequency and spectrum. The optimum dose was 60 Gy. After several cycles of selection and fixation between 2009 and 2014 (M0-M6), six prospective lines with desirable characters were selected at the M6 generation. The selected mutant lines along with other mutant varieties were then tested at five locations in two planting seasons to select high-yielding and stable genotypes. The experiment was conducted in a randomized complete block design with three replications across the locations and seasons. The pooled analysis of variance revealed highly significant differences (p ≤ 0.01, 0.05) among genotypes, among locations and among genotypes by location by season (G×L×S interaction) for the yield traits except for seasons and genotype by season (G×S interaction). Based on univariate and multivariate stability parameters, rice genotypes were classified into three main categories. The first group comprised genotypes with high yield stability along with high yield per hectare. These genotypes include ML4 and ML6 and are widely adapted to diverse environmental conditions. One line exhibited high yield per hectare but low stability; this genotype (ML9) is suitable for specific environments. The last group had low yield per hectare and high stability and included 'MR220', 'Binadhan4' and 'Binadhan7'. This final group is more suitable for breeding specific traits or perhaps has yield component compensation. Hence, rice mutant lines ML4 and ML6 were recommended for commercial cultivation in Malaysia.\",\"PeriodicalId\":287197,\"journal\":{\"name\":\"Mutation breeding, genetic diversity and crop adaptation to climate change\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation breeding, genetic diversity and crop adaptation to climate change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1079/9781789249095.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation breeding, genetic diversity and crop adaptation to climate change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789249095.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of mutation techniques and genotype × environment interaction for grain yield in ion beam induced mutant rice lines tested in multiple locations in Malaysia.
Abstract
Genotype evaluation for stability and high yield in rice is an important factor for sustainable rice production and food security. These evaluations are essential, especially when the breeding objective is to release rice with high yields, adaptability and stability for commercial cultivation. To achieve this objective, this study was carried out to select high-yielding rice genotypes induced by ion beam irradiation. Seeds of the rice variety 'MR219' were subjected to different doses of 320 MeV carbon-ion beam irradiation to determine the optimum dose to produce high mutant frequency and spectrum. The optimum dose was 60 Gy. After several cycles of selection and fixation between 2009 and 2014 (M0-M6), six prospective lines with desirable characters were selected at the M6 generation. The selected mutant lines along with other mutant varieties were then tested at five locations in two planting seasons to select high-yielding and stable genotypes. The experiment was conducted in a randomized complete block design with three replications across the locations and seasons. The pooled analysis of variance revealed highly significant differences (p ≤ 0.01, 0.05) among genotypes, among locations and among genotypes by location by season (G×L×S interaction) for the yield traits except for seasons and genotype by season (G×S interaction). Based on univariate and multivariate stability parameters, rice genotypes were classified into three main categories. The first group comprised genotypes with high yield stability along with high yield per hectare. These genotypes include ML4 and ML6 and are widely adapted to diverse environmental conditions. One line exhibited high yield per hectare but low stability; this genotype (ML9) is suitable for specific environments. The last group had low yield per hectare and high stability and included 'MR220', 'Binadhan4' and 'Binadhan7'. This final group is more suitable for breeding specific traits or perhaps has yield component compensation. Hence, rice mutant lines ML4 and ML6 were recommended for commercial cultivation in Malaysia.