Joachna Meya Loua-Bouayi, C. Tathy, A. K. Manounou
{"title":"基于水平集方法的盐水入侵建模。应用于亨利的问题","authors":"Joachna Meya Loua-Bouayi, C. Tathy, A. K. Manounou","doi":"10.4236/cweee.2022.111002","DOIUrl":null,"url":null,"abstract":"The salt intrusion phenomenon is caused by overexploitation of aquifers in coastal areas. This physical phenomenon has been the subject of numerous studies and numerous methods have been proposed, with the aim of protecting the quality of the water in these aquifers. This work proposes a two-dimensional saline intrusion model using the sharp interface approach and the level set method. It consists of a parabolic equation modeling the underground flow and a hyperbolic Equation (the level set equation) which makes it possible to track the evolution of the interface. High-order numerical schemes such as the space scheme WENO5 and the third-order time scheme TVD-RK were used for the numerical resolution of the hyperbolic equation. To limit the tightening of the contour curves of the level set function, the redistanciation or reinitialization algorithm proposed by Sussma et al. (1994) was used. To ensure the effectiveness and reliability of the proposed method, two tests re-lating to the standard Henry problem and the modified Henry problem were performed. Recall that Henry’s problem uses the variable density modeling approach in a confined and homogeneous aquifer. By comparing the results obtained by the level set method with reinitialization (LSMR) and those obtained by Henry (1964), and by Simpson and Clement (2004), we see in the two test cases that the level set method reproduces well the toe, the tip and the behaviour of the interface. These results correspond to the results obtained by Abarca for","PeriodicalId":142066,"journal":{"name":"Computational Water, Energy, and Environmental Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of the Saltwater Intrusion Using the Level Set Method. Application to Henry’s Problem\",\"authors\":\"Joachna Meya Loua-Bouayi, C. Tathy, A. K. Manounou\",\"doi\":\"10.4236/cweee.2022.111002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The salt intrusion phenomenon is caused by overexploitation of aquifers in coastal areas. This physical phenomenon has been the subject of numerous studies and numerous methods have been proposed, with the aim of protecting the quality of the water in these aquifers. This work proposes a two-dimensional saline intrusion model using the sharp interface approach and the level set method. It consists of a parabolic equation modeling the underground flow and a hyperbolic Equation (the level set equation) which makes it possible to track the evolution of the interface. High-order numerical schemes such as the space scheme WENO5 and the third-order time scheme TVD-RK were used for the numerical resolution of the hyperbolic equation. To limit the tightening of the contour curves of the level set function, the redistanciation or reinitialization algorithm proposed by Sussma et al. (1994) was used. To ensure the effectiveness and reliability of the proposed method, two tests re-lating to the standard Henry problem and the modified Henry problem were performed. Recall that Henry’s problem uses the variable density modeling approach in a confined and homogeneous aquifer. By comparing the results obtained by the level set method with reinitialization (LSMR) and those obtained by Henry (1964), and by Simpson and Clement (2004), we see in the two test cases that the level set method reproduces well the toe, the tip and the behaviour of the interface. These results correspond to the results obtained by Abarca for\",\"PeriodicalId\":142066,\"journal\":{\"name\":\"Computational Water, Energy, and Environmental Engineering\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Water, Energy, and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cweee.2022.111002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Water, Energy, and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cweee.2022.111002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of the Saltwater Intrusion Using the Level Set Method. Application to Henry’s Problem
The salt intrusion phenomenon is caused by overexploitation of aquifers in coastal areas. This physical phenomenon has been the subject of numerous studies and numerous methods have been proposed, with the aim of protecting the quality of the water in these aquifers. This work proposes a two-dimensional saline intrusion model using the sharp interface approach and the level set method. It consists of a parabolic equation modeling the underground flow and a hyperbolic Equation (the level set equation) which makes it possible to track the evolution of the interface. High-order numerical schemes such as the space scheme WENO5 and the third-order time scheme TVD-RK were used for the numerical resolution of the hyperbolic equation. To limit the tightening of the contour curves of the level set function, the redistanciation or reinitialization algorithm proposed by Sussma et al. (1994) was used. To ensure the effectiveness and reliability of the proposed method, two tests re-lating to the standard Henry problem and the modified Henry problem were performed. Recall that Henry’s problem uses the variable density modeling approach in a confined and homogeneous aquifer. By comparing the results obtained by the level set method with reinitialization (LSMR) and those obtained by Henry (1964), and by Simpson and Clement (2004), we see in the two test cases that the level set method reproduces well the toe, the tip and the behaviour of the interface. These results correspond to the results obtained by Abarca for