Estevam Hruschka, H. Camargo, M. E. Cintra, M. C. Nicoletti
{"title":"贝叶斯模糊:使用贝叶斯分类器生成模糊规则库","authors":"Estevam Hruschka, H. Camargo, M. E. Cintra, M. C. Nicoletti","doi":"10.1109/FUZZY.2007.4295637","DOIUrl":null,"url":null,"abstract":"Traditional algorithms for learning Bayesian classifiers (BCs) from data are known to induce accurate classification models. However, when using these algorithms, two main concerns should be considered: i) they require qualitative data and ii) generally the induced models are not easily comprehensible by human beings. This paper deals with the two above issues by proposing a hybrid method named BayesFuzzy that learns from quantitative data and induces a fuzzy rule based model that enhances comprehensibility. BayesFuzzy has been implemented as an automatic system that combines a fuzzy strategy, for transforming numerical data into qualitative information, with a Bayes-based approach for inducing rules. Promising empirical results of the use of the BayesFuzzy system in four knowledge domains are presented and discussed.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"BayesFuzzy: using a Bayesian Classifier to Induce a Fuzzy Rule Base\",\"authors\":\"Estevam Hruschka, H. Camargo, M. E. Cintra, M. C. Nicoletti\",\"doi\":\"10.1109/FUZZY.2007.4295637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional algorithms for learning Bayesian classifiers (BCs) from data are known to induce accurate classification models. However, when using these algorithms, two main concerns should be considered: i) they require qualitative data and ii) generally the induced models are not easily comprehensible by human beings. This paper deals with the two above issues by proposing a hybrid method named BayesFuzzy that learns from quantitative data and induces a fuzzy rule based model that enhances comprehensibility. BayesFuzzy has been implemented as an automatic system that combines a fuzzy strategy, for transforming numerical data into qualitative information, with a Bayes-based approach for inducing rules. Promising empirical results of the use of the BayesFuzzy system in four knowledge domains are presented and discussed.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BayesFuzzy: using a Bayesian Classifier to Induce a Fuzzy Rule Base
Traditional algorithms for learning Bayesian classifiers (BCs) from data are known to induce accurate classification models. However, when using these algorithms, two main concerns should be considered: i) they require qualitative data and ii) generally the induced models are not easily comprehensible by human beings. This paper deals with the two above issues by proposing a hybrid method named BayesFuzzy that learns from quantitative data and induces a fuzzy rule based model that enhances comprehensibility. BayesFuzzy has been implemented as an automatic system that combines a fuzzy strategy, for transforming numerical data into qualitative information, with a Bayes-based approach for inducing rules. Promising empirical results of the use of the BayesFuzzy system in four knowledge domains are presented and discussed.