基于WSM方法的数据预测估计

{"title":"基于WSM方法的数据预测估计","authors":"","doi":"10.46632/jemm/5/4/10","DOIUrl":null,"url":null,"abstract":"Existing Traffic Flow Forecasting Methods Mainly predicts shallow traffic Use models, and many are real still not satisfactory for worldly applications. This situation prompts a rethinking of Traffic flow is massive deep architectural models basically a prediction problem Traffic data. In this paper, useful missing data for ensemble filtering We propose an estimation algorithm. A Other similar users (items) to user (item) If so, our approach accounts for missing data Predicting and informing users, products or How to recover missing data using both Determines what to predict. Alternative: TUNNEL, SOIL, INDOOR, WATER and RANDOM FOREST. Evaluation option: MAE, SD of MAE, MAPE, MAPE of SD from the result it is seen that RANDOM FOREST and is got the first rank whereas is the WATER got is having the lowest rank. The value of the dataset for Range of Data Prediction in WSM (Weighted sum model) Method shows that it results in RANDOM FOREST and top ranking.","PeriodicalId":174846,"journal":{"name":"REST Journal on Emerging trends in Modelling and Manufacturing","volume":"36 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Data Prediction using WSM Method\",\"authors\":\"\",\"doi\":\"10.46632/jemm/5/4/10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Traffic Flow Forecasting Methods Mainly predicts shallow traffic Use models, and many are real still not satisfactory for worldly applications. This situation prompts a rethinking of Traffic flow is massive deep architectural models basically a prediction problem Traffic data. In this paper, useful missing data for ensemble filtering We propose an estimation algorithm. A Other similar users (items) to user (item) If so, our approach accounts for missing data Predicting and informing users, products or How to recover missing data using both Determines what to predict. Alternative: TUNNEL, SOIL, INDOOR, WATER and RANDOM FOREST. Evaluation option: MAE, SD of MAE, MAPE, MAPE of SD from the result it is seen that RANDOM FOREST and is got the first rank whereas is the WATER got is having the lowest rank. The value of the dataset for Range of Data Prediction in WSM (Weighted sum model) Method shows that it results in RANDOM FOREST and top ranking.\",\"PeriodicalId\":174846,\"journal\":{\"name\":\"REST Journal on Emerging trends in Modelling and Manufacturing\",\"volume\":\"36 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"REST Journal on Emerging trends in Modelling and Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46632/jemm/5/4/10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"REST Journal on Emerging trends in Modelling and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46632/jemm/5/4/10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的交通流预测方法主要预测的是浅层次的交通使用模型,很多预测方法都是真实的,但仍不能满足实际应用。这种情况促使人们重新思考交通流是大规模的深层架构模型,基本上是交通数据的预测问题。本文针对集成滤波中有用的缺失数据,提出了一种估计算法。其他类似的用户(项目)的用户(项目)如果是这样,我们的方法说明丢失的数据预测和通知用户,产品或如何恢复丢失的数据使用两者确定预测什么。可选:隧道,土壤,室内,水和随机森林。评估选项:MAE, MAE的SD, MAPE, SD的MAPE从结果中可以看出RANDOM FOREST和is得到了第一名,而WATER得到的是最低名。WSM(加权和模型)方法中数据范围预测的数据集值表明,该方法可以得到RANDOM FOREST和top ranking。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Data Prediction using WSM Method
Existing Traffic Flow Forecasting Methods Mainly predicts shallow traffic Use models, and many are real still not satisfactory for worldly applications. This situation prompts a rethinking of Traffic flow is massive deep architectural models basically a prediction problem Traffic data. In this paper, useful missing data for ensemble filtering We propose an estimation algorithm. A Other similar users (items) to user (item) If so, our approach accounts for missing data Predicting and informing users, products or How to recover missing data using both Determines what to predict. Alternative: TUNNEL, SOIL, INDOOR, WATER and RANDOM FOREST. Evaluation option: MAE, SD of MAE, MAPE, MAPE of SD from the result it is seen that RANDOM FOREST and is got the first rank whereas is the WATER got is having the lowest rank. The value of the dataset for Range of Data Prediction in WSM (Weighted sum model) Method shows that it results in RANDOM FOREST and top ranking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信