综合导航信息系统位置估计模块中无气味卡尔曼滤波与扩展卡尔曼滤波的比较

Mathieu St-Pierre, Mathieu, S. t-Pierre, D. Gingras
{"title":"综合导航信息系统位置估计模块中无气味卡尔曼滤波与扩展卡尔曼滤波的比较","authors":"Mathieu St-Pierre, Mathieu, S. t-Pierre, D. Gingras","doi":"10.1109/IVS.2004.1336492","DOIUrl":null,"url":null,"abstract":"An integrated navigation information system must know continuously the current position with a good precision. The required performance of the positioning module is achieved by using a cluster of heterogeneous sensors whose measurements are fused. The most popular data fusion method for positioning problems is the extended Kalman filter. The extended Kalman filter is a variation of the Kalman filter used to solve non-linear problems. Recently, an improvement to the extended Kalman filter has been proposed, the unscented Kalman filter. This paper describes an empirical analysis evaluating the performances of the unscented Kalman filter and comparing them with the extended Kalman filter's performances.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"223","resultStr":"{\"title\":\"Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system\",\"authors\":\"Mathieu St-Pierre, Mathieu, S. t-Pierre, D. Gingras\",\"doi\":\"10.1109/IVS.2004.1336492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated navigation information system must know continuously the current position with a good precision. The required performance of the positioning module is achieved by using a cluster of heterogeneous sensors whose measurements are fused. The most popular data fusion method for positioning problems is the extended Kalman filter. The extended Kalman filter is a variation of the Kalman filter used to solve non-linear problems. Recently, an improvement to the extended Kalman filter has been proposed, the unscented Kalman filter. This paper describes an empirical analysis evaluating the performances of the unscented Kalman filter and comparing them with the extended Kalman filter's performances.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"223\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 223

摘要

综合导航信息系统必须能够连续地、高精度地了解当前位置。定位模块所需的性能是通过使用一组异构传感器来实现的,这些传感器的测量结果是融合的。定位问题中最常用的数据融合方法是扩展卡尔曼滤波。扩展卡尔曼滤波器是卡尔曼滤波器的一种变体,用于解决非线性问题。近年来,人们提出了对扩展卡尔曼滤波器的一种改进,即无气味卡尔曼滤波器。本文对无气味卡尔曼滤波器的性能进行了实证分析,并与扩展卡尔曼滤波器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system
An integrated navigation information system must know continuously the current position with a good precision. The required performance of the positioning module is achieved by using a cluster of heterogeneous sensors whose measurements are fused. The most popular data fusion method for positioning problems is the extended Kalman filter. The extended Kalman filter is a variation of the Kalman filter used to solve non-linear problems. Recently, an improvement to the extended Kalman filter has been proposed, the unscented Kalman filter. This paper describes an empirical analysis evaluating the performances of the unscented Kalman filter and comparing them with the extended Kalman filter's performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信