将无监督风险分层扩展到大规模临床数据集

Z. Syed, I. Rubinfeld
{"title":"将无监督风险分层扩展到大规模临床数据集","authors":"Z. Syed, I. Rubinfeld","doi":"10.4018/jkdb.2011010103","DOIUrl":null,"url":null,"abstract":"While rare clinical events, by definition, occur infrequently in a population, the consequences of these events can be drastic. Unfortunately, developing risk stratification algorithms for these conditions requires large volumes of data to capture enough positive and negative cases. This process is slow, expensive, and burdensome to both patients and caregivers. This paper proposes an unsupervised machine learning approach to address this challenge and risk stratify patients for adverse outcomes without use of a priori knowledge or labeled training data. The key idea of the approach is to identify high-risk patients as anomalies in a population. Cases are identified through a novel algorithm that finds an approximate solution to the k-nearest neighbor problem using locality sensitive hashing (LSH) based on p-stable distributions. The algorithm is optimized to use multiple LSH searches, each with a geometrically increasing radius, to find the k-nearest neighbors of patients in a dynamically changing dataset where patients are being added or removed over time. When evaluated on data from the National Surgical Quality Improvement Program (NSQIP), this approach successfully identifies patients at an elevated risk of mortality and rare morbidities. The LSH-based algorithm provided a substantial improvement over an exact k-nearest neighbor algorithm in runtime, while achieving a similar accuracy.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scaling Unsupervised Risk Stratification to Massive Clinical Datasets\",\"authors\":\"Z. Syed, I. Rubinfeld\",\"doi\":\"10.4018/jkdb.2011010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While rare clinical events, by definition, occur infrequently in a population, the consequences of these events can be drastic. Unfortunately, developing risk stratification algorithms for these conditions requires large volumes of data to capture enough positive and negative cases. This process is slow, expensive, and burdensome to both patients and caregivers. This paper proposes an unsupervised machine learning approach to address this challenge and risk stratify patients for adverse outcomes without use of a priori knowledge or labeled training data. The key idea of the approach is to identify high-risk patients as anomalies in a population. Cases are identified through a novel algorithm that finds an approximate solution to the k-nearest neighbor problem using locality sensitive hashing (LSH) based on p-stable distributions. The algorithm is optimized to use multiple LSH searches, each with a geometrically increasing radius, to find the k-nearest neighbors of patients in a dynamically changing dataset where patients are being added or removed over time. When evaluated on data from the National Surgical Quality Improvement Program (NSQIP), this approach successfully identifies patients at an elevated risk of mortality and rare morbidities. The LSH-based algorithm provided a substantial improvement over an exact k-nearest neighbor algorithm in runtime, while achieving a similar accuracy.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2011010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2011010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

虽然罕见的临床事件,根据定义,在人群中很少发生,但这些事件的后果可能是严重的。不幸的是,针对这些情况开发风险分层算法需要大量数据来捕获足够的正面和负面案例。这个过程缓慢、昂贵,而且对患者和护理人员都是负担。本文提出了一种无监督机器学习方法来解决这一挑战,并在不使用先验知识或标记训练数据的情况下对患者的不良结果进行风险分层。该方法的关键思想是将高危患者识别为人群中的异常。使用基于p稳定分布的局域敏感散列(LSH)找到k近邻问题的近似解,通过一种新的算法来识别情况。该算法被优化为使用多个LSH搜索,每个搜索的半径呈几何级数增加,以在动态变化的数据集中找到患者的k个最近邻居,其中患者随着时间的推移被添加或删除。当根据国家外科质量改进计划(NSQIP)的数据进行评估时,这种方法成功地识别出死亡率升高和罕见发病率的患者。基于lsh的算法在运行时比精确的k近邻算法有了很大的改进,同时实现了相似的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Unsupervised Risk Stratification to Massive Clinical Datasets
While rare clinical events, by definition, occur infrequently in a population, the consequences of these events can be drastic. Unfortunately, developing risk stratification algorithms for these conditions requires large volumes of data to capture enough positive and negative cases. This process is slow, expensive, and burdensome to both patients and caregivers. This paper proposes an unsupervised machine learning approach to address this challenge and risk stratify patients for adverse outcomes without use of a priori knowledge or labeled training data. The key idea of the approach is to identify high-risk patients as anomalies in a population. Cases are identified through a novel algorithm that finds an approximate solution to the k-nearest neighbor problem using locality sensitive hashing (LSH) based on p-stable distributions. The algorithm is optimized to use multiple LSH searches, each with a geometrically increasing radius, to find the k-nearest neighbors of patients in a dynamically changing dataset where patients are being added or removed over time. When evaluated on data from the National Surgical Quality Improvement Program (NSQIP), this approach successfully identifies patients at an elevated risk of mortality and rare morbidities. The LSH-based algorithm provided a substantial improvement over an exact k-nearest neighbor algorithm in runtime, while achieving a similar accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信