作为饰面材料的表面石膏复合材料及其性能的技术要素

V. Tarasevych, Yu. G. Gasan
{"title":"作为饰面材料的表面石膏复合材料及其性能的技术要素","authors":"V. Tarasevych, Yu. G. Gasan","doi":"10.31650/2415-377x-2022-86-78-85","DOIUrl":null,"url":null,"abstract":"The paper considers the issues of obtaining a composite material based on gypsum, fly ash and sulfur with improved performance. Regularities of impregnation of a gypsum sol matrix with a sulfur melt are established, taking into account the capillary-porous structure of the gypsum sol stone and the physical and technical properties of sulfur. The conducted studies make it possible to determine the sulfur mass transfer coefficient ams and the maximum sulfur-containing Us in impregnated products, depending on the initial values of the sulfur melt temperature, water-solid ratio and fly ash content. This allows to determine quickly and effectively the duration of impregnation to a given sulfur content for a specific composition and size of gypsum products. Technological factors influencing the hardening coefficient, water resistance and chemical resistance of gypsum ash products impregnated in sulfur melt have been studied. An analysis of the results shows that the strength of samples impregnated with sulfur increases while the degree of filling of the pore space with it is increasing. So, with increase in the relative sulfur content (v = Us / Usmax) from 0.30 to 0.90, the compressive strength increases from 10.1 to 42 MPa. It has been established that water resistance of the impregnated samples significantly depends on the degree of impregnation and the amount of fly ash. The experiments carried out give reason to believe that the material based on gypsum, ash and sulfur refers to waterproof materials, since the softening coefficient is higher than 0.7. It has been established that gypsum and gypsum samples impregnated with sulfur melt have a chemical resistance coefficient of at least 0.7, which allows them to be classified as chemically resistant. The resulting sulfur-gypsum composite is distinguished by high strength, water and corrosion resistance to aggressive environments of livestock complexes, food and chemical industries, where it should be used in the form of special facing products.","PeriodicalId":273453,"journal":{"name":"Bulletin of Odessa State Academy of Civil Engineering and Architecture","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ELEMENTS OF TECHNOLOGY FOR THE SURFACE GIPSUM COMPOSITE AND ITS PROPERTIES, AS A FACING MATERIAL\",\"authors\":\"V. Tarasevych, Yu. G. Gasan\",\"doi\":\"10.31650/2415-377x-2022-86-78-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the issues of obtaining a composite material based on gypsum, fly ash and sulfur with improved performance. Regularities of impregnation of a gypsum sol matrix with a sulfur melt are established, taking into account the capillary-porous structure of the gypsum sol stone and the physical and technical properties of sulfur. The conducted studies make it possible to determine the sulfur mass transfer coefficient ams and the maximum sulfur-containing Us in impregnated products, depending on the initial values of the sulfur melt temperature, water-solid ratio and fly ash content. This allows to determine quickly and effectively the duration of impregnation to a given sulfur content for a specific composition and size of gypsum products. Technological factors influencing the hardening coefficient, water resistance and chemical resistance of gypsum ash products impregnated in sulfur melt have been studied. An analysis of the results shows that the strength of samples impregnated with sulfur increases while the degree of filling of the pore space with it is increasing. So, with increase in the relative sulfur content (v = Us / Usmax) from 0.30 to 0.90, the compressive strength increases from 10.1 to 42 MPa. It has been established that water resistance of the impregnated samples significantly depends on the degree of impregnation and the amount of fly ash. The experiments carried out give reason to believe that the material based on gypsum, ash and sulfur refers to waterproof materials, since the softening coefficient is higher than 0.7. It has been established that gypsum and gypsum samples impregnated with sulfur melt have a chemical resistance coefficient of at least 0.7, which allows them to be classified as chemically resistant. The resulting sulfur-gypsum composite is distinguished by high strength, water and corrosion resistance to aggressive environments of livestock complexes, food and chemical industries, where it should be used in the form of special facing products.\",\"PeriodicalId\":273453,\"journal\":{\"name\":\"Bulletin of Odessa State Academy of Civil Engineering and Architecture\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Odessa State Academy of Civil Engineering and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31650/2415-377x-2022-86-78-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Odessa State Academy of Civil Engineering and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31650/2415-377x-2022-86-78-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以石膏、粉煤灰和硫磺为基料制备性能较好的复合材料的问题。考虑石膏溶胶的毛细孔结构和硫的物理技术性质,建立了石膏溶胶基体与硫熔体浸渍的规律。根据硫熔体温度、水固比和粉煤灰掺量的初始值,可以确定浸渍产物中硫的传质系数ams和最大含硫量Us。这允许快速有效地确定浸渍到给定硫含量的石膏产品的特定组成和尺寸的持续时间。研究了影响硫熔体浸渍石膏灰制品硬化系数、耐水性和耐化学性的工艺因素。分析结果表明,硫浸渍试样的强度随孔隙填充程度的增加而增加。因此,当相对硫含量(v = Us / Usmax)从0.30增加到0.90时,抗压强度从10.1增加到42 MPa。研究表明,浸渍试样的耐水性与浸渍程度和粉煤灰掺量有显著关系。通过试验,有理由认为石膏、灰分、硫基材料为防水材料,其软化系数大于0.7。已经确定,石膏和浸渍硫磺熔体的石膏样品的耐化学性系数至少为0.7,这使得它们可以被归类为耐化学性。由此产生的硫磺-石膏复合材料的特点是强度高,耐水和耐腐蚀,适合牲畜综合体,食品和化学工业的腐蚀性环境,应以特殊饰面产品的形式使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ELEMENTS OF TECHNOLOGY FOR THE SURFACE GIPSUM COMPOSITE AND ITS PROPERTIES, AS A FACING MATERIAL
The paper considers the issues of obtaining a composite material based on gypsum, fly ash and sulfur with improved performance. Regularities of impregnation of a gypsum sol matrix with a sulfur melt are established, taking into account the capillary-porous structure of the gypsum sol stone and the physical and technical properties of sulfur. The conducted studies make it possible to determine the sulfur mass transfer coefficient ams and the maximum sulfur-containing Us in impregnated products, depending on the initial values of the sulfur melt temperature, water-solid ratio and fly ash content. This allows to determine quickly and effectively the duration of impregnation to a given sulfur content for a specific composition and size of gypsum products. Technological factors influencing the hardening coefficient, water resistance and chemical resistance of gypsum ash products impregnated in sulfur melt have been studied. An analysis of the results shows that the strength of samples impregnated with sulfur increases while the degree of filling of the pore space with it is increasing. So, with increase in the relative sulfur content (v = Us / Usmax) from 0.30 to 0.90, the compressive strength increases from 10.1 to 42 MPa. It has been established that water resistance of the impregnated samples significantly depends on the degree of impregnation and the amount of fly ash. The experiments carried out give reason to believe that the material based on gypsum, ash and sulfur refers to waterproof materials, since the softening coefficient is higher than 0.7. It has been established that gypsum and gypsum samples impregnated with sulfur melt have a chemical resistance coefficient of at least 0.7, which allows them to be classified as chemically resistant. The resulting sulfur-gypsum composite is distinguished by high strength, water and corrosion resistance to aggressive environments of livestock complexes, food and chemical industries, where it should be used in the form of special facing products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信