{"title":"基于FPGA的收缩激光雷达模糊边界监控系统","authors":"Hossam O. Ahmed","doi":"10.1109/WSCE49000.2019.9040982","DOIUrl":null,"url":null,"abstract":"The protection of sensitive facilities or international borders using Wireless Sensor Networks (WSN) has become one of the important topics nowadays. One of the efficient techniques which could guarantee a high precision capabilities of event detection is to depend on Fuzzy Logic System (FLS) as the Artificial Intelligence(AI)-based processing algorithm, in addition to use the Field Programmable Logic Array (FPGA) as the hardware platform due to its reconfigurability and high-speed processing power that it could provide. In this paper, we designed a systolic-based FLS architecture using VHDL based on the validated MATLAB model. The proposed systolic FLS architecture has been designed to be interfaced with a TFmini Plus Lidar Sensor Lidar sensor and a MaxSonar ultrasonic sensor using the Intel Altera OpenVINO FPGA kit. The proposed systolic FLS processing core achieved a processing computational speed of 3.085 GOPS at maximum operating frequency of 181.55 MHz, while draining only 29.09 mW as a core dynamic thermal power dissipation loss and only about 12.98 mW as a I/O thermal power dissipation loss.","PeriodicalId":153298,"journal":{"name":"2019 2nd World Symposium on Communication Engineering (WSCE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Systolic Lidar-based Fuzzy Logic System for border Monitoring using FPGA\",\"authors\":\"Hossam O. Ahmed\",\"doi\":\"10.1109/WSCE49000.2019.9040982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protection of sensitive facilities or international borders using Wireless Sensor Networks (WSN) has become one of the important topics nowadays. One of the efficient techniques which could guarantee a high precision capabilities of event detection is to depend on Fuzzy Logic System (FLS) as the Artificial Intelligence(AI)-based processing algorithm, in addition to use the Field Programmable Logic Array (FPGA) as the hardware platform due to its reconfigurability and high-speed processing power that it could provide. In this paper, we designed a systolic-based FLS architecture using VHDL based on the validated MATLAB model. The proposed systolic FLS architecture has been designed to be interfaced with a TFmini Plus Lidar Sensor Lidar sensor and a MaxSonar ultrasonic sensor using the Intel Altera OpenVINO FPGA kit. The proposed systolic FLS processing core achieved a processing computational speed of 3.085 GOPS at maximum operating frequency of 181.55 MHz, while draining only 29.09 mW as a core dynamic thermal power dissipation loss and only about 12.98 mW as a I/O thermal power dissipation loss.\",\"PeriodicalId\":153298,\"journal\":{\"name\":\"2019 2nd World Symposium on Communication Engineering (WSCE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd World Symposium on Communication Engineering (WSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSCE49000.2019.9040982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd World Symposium on Communication Engineering (WSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCE49000.2019.9040982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systolic Lidar-based Fuzzy Logic System for border Monitoring using FPGA
The protection of sensitive facilities or international borders using Wireless Sensor Networks (WSN) has become one of the important topics nowadays. One of the efficient techniques which could guarantee a high precision capabilities of event detection is to depend on Fuzzy Logic System (FLS) as the Artificial Intelligence(AI)-based processing algorithm, in addition to use the Field Programmable Logic Array (FPGA) as the hardware platform due to its reconfigurability and high-speed processing power that it could provide. In this paper, we designed a systolic-based FLS architecture using VHDL based on the validated MATLAB model. The proposed systolic FLS architecture has been designed to be interfaced with a TFmini Plus Lidar Sensor Lidar sensor and a MaxSonar ultrasonic sensor using the Intel Altera OpenVINO FPGA kit. The proposed systolic FLS processing core achieved a processing computational speed of 3.085 GOPS at maximum operating frequency of 181.55 MHz, while draining only 29.09 mW as a core dynamic thermal power dissipation loss and only about 12.98 mW as a I/O thermal power dissipation loss.