基于FPGA的收缩激光雷达模糊边界监控系统

Hossam O. Ahmed
{"title":"基于FPGA的收缩激光雷达模糊边界监控系统","authors":"Hossam O. Ahmed","doi":"10.1109/WSCE49000.2019.9040982","DOIUrl":null,"url":null,"abstract":"The protection of sensitive facilities or international borders using Wireless Sensor Networks (WSN) has become one of the important topics nowadays. One of the efficient techniques which could guarantee a high precision capabilities of event detection is to depend on Fuzzy Logic System (FLS) as the Artificial Intelligence(AI)-based processing algorithm, in addition to use the Field Programmable Logic Array (FPGA) as the hardware platform due to its reconfigurability and high-speed processing power that it could provide. In this paper, we designed a systolic-based FLS architecture using VHDL based on the validated MATLAB model. The proposed systolic FLS architecture has been designed to be interfaced with a TFmini Plus Lidar Sensor Lidar sensor and a MaxSonar ultrasonic sensor using the Intel Altera OpenVINO FPGA kit. The proposed systolic FLS processing core achieved a processing computational speed of 3.085 GOPS at maximum operating frequency of 181.55 MHz, while draining only 29.09 mW as a core dynamic thermal power dissipation loss and only about 12.98 mW as a I/O thermal power dissipation loss.","PeriodicalId":153298,"journal":{"name":"2019 2nd World Symposium on Communication Engineering (WSCE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Systolic Lidar-based Fuzzy Logic System for border Monitoring using FPGA\",\"authors\":\"Hossam O. Ahmed\",\"doi\":\"10.1109/WSCE49000.2019.9040982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protection of sensitive facilities or international borders using Wireless Sensor Networks (WSN) has become one of the important topics nowadays. One of the efficient techniques which could guarantee a high precision capabilities of event detection is to depend on Fuzzy Logic System (FLS) as the Artificial Intelligence(AI)-based processing algorithm, in addition to use the Field Programmable Logic Array (FPGA) as the hardware platform due to its reconfigurability and high-speed processing power that it could provide. In this paper, we designed a systolic-based FLS architecture using VHDL based on the validated MATLAB model. The proposed systolic FLS architecture has been designed to be interfaced with a TFmini Plus Lidar Sensor Lidar sensor and a MaxSonar ultrasonic sensor using the Intel Altera OpenVINO FPGA kit. The proposed systolic FLS processing core achieved a processing computational speed of 3.085 GOPS at maximum operating frequency of 181.55 MHz, while draining only 29.09 mW as a core dynamic thermal power dissipation loss and only about 12.98 mW as a I/O thermal power dissipation loss.\",\"PeriodicalId\":153298,\"journal\":{\"name\":\"2019 2nd World Symposium on Communication Engineering (WSCE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd World Symposium on Communication Engineering (WSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSCE49000.2019.9040982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd World Symposium on Communication Engineering (WSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCE49000.2019.9040982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用无线传感器网络(WSN)保护敏感设施或国际边界已成为当今的重要课题之一。基于模糊逻辑系统(FLS)作为基于人工智能(AI)的处理算法,利用现场可编程逻辑阵列(FPGA)作为硬件平台,以其可重构性和高速处理能力,是保证事件检测高精度能力的有效技术之一。本文在验证的MATLAB模型的基础上,利用VHDL语言设计了一个基于心脏收缩的FLS体系结构。所提出的收缩FLS架构被设计为与使用英特尔Altera OpenVINO FPGA套件的TFmini Plus激光雷达传感器和MaxSonar超声波传感器接口。在最高工作频率为181.55 MHz时,所提出的收缩FLS处理核心的处理计算速度为3.085 GOPS,核心动态热功耗损耗仅为29.09 mW, I/O热功耗损耗仅为12.98 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systolic Lidar-based Fuzzy Logic System for border Monitoring using FPGA
The protection of sensitive facilities or international borders using Wireless Sensor Networks (WSN) has become one of the important topics nowadays. One of the efficient techniques which could guarantee a high precision capabilities of event detection is to depend on Fuzzy Logic System (FLS) as the Artificial Intelligence(AI)-based processing algorithm, in addition to use the Field Programmable Logic Array (FPGA) as the hardware platform due to its reconfigurability and high-speed processing power that it could provide. In this paper, we designed a systolic-based FLS architecture using VHDL based on the validated MATLAB model. The proposed systolic FLS architecture has been designed to be interfaced with a TFmini Plus Lidar Sensor Lidar sensor and a MaxSonar ultrasonic sensor using the Intel Altera OpenVINO FPGA kit. The proposed systolic FLS processing core achieved a processing computational speed of 3.085 GOPS at maximum operating frequency of 181.55 MHz, while draining only 29.09 mW as a core dynamic thermal power dissipation loss and only about 12.98 mW as a I/O thermal power dissipation loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信