单一人体运动预测的简单基线

Chenxi Wang, Yunfeng Wang, Zixuan Huang, Zhiwen Chen
{"title":"单一人体运动预测的简单基线","authors":"Chenxi Wang, Yunfeng Wang, Zixuan Huang, Zhiwen Chen","doi":"10.1109/ICCVW54120.2021.00255","DOIUrl":null,"url":null,"abstract":"Global human motion forecasting is important in many fields, which is the combination of global human trajectory prediction and local human pose prediction. Visual and social information are often used to boost model performance, however, they may consume too much computational resources. In this paper, we establish a simple but effective baseline for single human motion forecasting without visual and social information, equipped with useful training tricks. Our method \"futuremotion_ICCV21\" outperforms existing methods by a large margin on SoMoF benchmark1. We hope our work provide new ideas for future research.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Simple Baseline for Single Human Motion Forecasting\",\"authors\":\"Chenxi Wang, Yunfeng Wang, Zixuan Huang, Zhiwen Chen\",\"doi\":\"10.1109/ICCVW54120.2021.00255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global human motion forecasting is important in many fields, which is the combination of global human trajectory prediction and local human pose prediction. Visual and social information are often used to boost model performance, however, they may consume too much computational resources. In this paper, we establish a simple but effective baseline for single human motion forecasting without visual and social information, equipped with useful training tricks. Our method \\\"futuremotion_ICCV21\\\" outperforms existing methods by a large margin on SoMoF benchmark1. We hope our work provide new ideas for future research.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

人体整体运动预测是人体整体轨迹预测和局部姿态预测的结合,在许多领域具有重要意义。视觉信息和社会信息通常用于提高模型性能,然而,它们可能会消耗过多的计算资源。在本文中,我们建立了一个简单而有效的基线,用于没有视觉和社会信息的单个人体运动预测,并配备了有用的训练技巧。我们的方法“futuremotion_ICCV21”在SoMoF基准测试1上的性能大大优于现有方法。我们希望我们的工作能为未来的研究提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Baseline for Single Human Motion Forecasting
Global human motion forecasting is important in many fields, which is the combination of global human trajectory prediction and local human pose prediction. Visual and social information are often used to boost model performance, however, they may consume too much computational resources. In this paper, we establish a simple but effective baseline for single human motion forecasting without visual and social information, equipped with useful training tricks. Our method "futuremotion_ICCV21" outperforms existing methods by a large margin on SoMoF benchmark1. We hope our work provide new ideas for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信