从脑电信号中解码意图和学习策略

Dongjae Kim, Sang Wan Lee
{"title":"从脑电信号中解码意图和学习策略","authors":"Dongjae Kim, Sang Wan Lee","doi":"10.1109/IWW-BCI.2019.8737346","DOIUrl":null,"url":null,"abstract":"Despite the fact that a majority of Brain-Computer Interface (BCI) studies have focused on decoding signals related to movement, decoding intention underlying movement might be equally important. Fundamental properties of electroencephalography (EEG) constrain temporal resolutions for directly decoding movement kinematics, so estimating intention pertaining to movement, which would help us predict both long and short term human behaviors, may be an alternative solution for overcoming this issue. To estimate movement intention, recent studies found it helpful to consider hierarchical control between two distinctive learning strategies in reinforcement learning: a goal-directed and a habitual strategy. In the previous study, we suggested a proof of concept, called a model-based BCI framework, that can distinguish different learning strategies from electroencephalography (EEG) data. To advance this concept, we proposed intention decoders based on simple long short-term memory models (LSTM). To test the effect of intention estimation on prediction performance, we trained two versions of intention decoders: one with and the other without making use of underlying learning strategies decoded by the model-based BCI. The simulation results demonstrated that estimation performance of intention decoders with model-based BCI is significantly better (84%) than the one without model-based BCI (77%). We argued that by using model-based BCI, we can not only estimate learning strategy but also improve decoding performance of movement intention with high accuracy.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decoding both intention and learning strategies from EEG signals\",\"authors\":\"Dongjae Kim, Sang Wan Lee\",\"doi\":\"10.1109/IWW-BCI.2019.8737346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the fact that a majority of Brain-Computer Interface (BCI) studies have focused on decoding signals related to movement, decoding intention underlying movement might be equally important. Fundamental properties of electroencephalography (EEG) constrain temporal resolutions for directly decoding movement kinematics, so estimating intention pertaining to movement, which would help us predict both long and short term human behaviors, may be an alternative solution for overcoming this issue. To estimate movement intention, recent studies found it helpful to consider hierarchical control between two distinctive learning strategies in reinforcement learning: a goal-directed and a habitual strategy. In the previous study, we suggested a proof of concept, called a model-based BCI framework, that can distinguish different learning strategies from electroencephalography (EEG) data. To advance this concept, we proposed intention decoders based on simple long short-term memory models (LSTM). To test the effect of intention estimation on prediction performance, we trained two versions of intention decoders: one with and the other without making use of underlying learning strategies decoded by the model-based BCI. The simulation results demonstrated that estimation performance of intention decoders with model-based BCI is significantly better (84%) than the one without model-based BCI (77%). We argued that by using model-based BCI, we can not only estimate learning strategy but also improve decoding performance of movement intention with high accuracy.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管大多数脑机接口(BCI)研究都集中在解码与运动相关的信号上,但解码运动背后的意图可能同样重要。脑电图(EEG)的基本特性限制了直接解码运动运动学的时间分辨率,因此估计与运动有关的意图,这将有助于我们预测长期和短期的人类行为,可能是克服这一问题的另一种解决方案。为了估计运动意图,最近的研究发现,在强化学习中考虑两种不同的学习策略:目标导向策略和习惯策略之间的层次控制是有帮助的。在之前的研究中,我们提出了一个概念验证,称为基于模型的脑机接口框架,它可以从脑电图(EEG)数据中区分不同的学习策略。为了推进这一概念,我们提出了基于简单长短期记忆模型(LSTM)的意图解码器。为了测试意图估计对预测性能的影响,我们训练了两个版本的意图解码器:一个使用和另一个不使用基于模型的脑机接口解码的底层学习策略。仿真结果表明,使用基于模型的BCI的意图解码器的估计性能(84%)明显优于不使用基于模型的BCI的意图解码器(77%)。我们认为,利用基于模型的脑机接口不仅可以估计学习策略,而且可以提高动作意图的解码精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding both intention and learning strategies from EEG signals
Despite the fact that a majority of Brain-Computer Interface (BCI) studies have focused on decoding signals related to movement, decoding intention underlying movement might be equally important. Fundamental properties of electroencephalography (EEG) constrain temporal resolutions for directly decoding movement kinematics, so estimating intention pertaining to movement, which would help us predict both long and short term human behaviors, may be an alternative solution for overcoming this issue. To estimate movement intention, recent studies found it helpful to consider hierarchical control between two distinctive learning strategies in reinforcement learning: a goal-directed and a habitual strategy. In the previous study, we suggested a proof of concept, called a model-based BCI framework, that can distinguish different learning strategies from electroencephalography (EEG) data. To advance this concept, we proposed intention decoders based on simple long short-term memory models (LSTM). To test the effect of intention estimation on prediction performance, we trained two versions of intention decoders: one with and the other without making use of underlying learning strategies decoded by the model-based BCI. The simulation results demonstrated that estimation performance of intention decoders with model-based BCI is significantly better (84%) than the one without model-based BCI (77%). We argued that by using model-based BCI, we can not only estimate learning strategy but also improve decoding performance of movement intention with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信