Huzaifi Hafizhahullah, A. R. Yuliani, H. Pardede, A. Ramdan, Vicky Zilvan, Dikdik Krisnandi, Jimmy Kadar
{"title":"基于充电曲线数据的混合CNN-LSTM电池剩余使用寿命预测","authors":"Huzaifi Hafizhahullah, A. R. Yuliani, H. Pardede, A. Ramdan, Vicky Zilvan, Dikdik Krisnandi, Jimmy Kadar","doi":"10.1145/3575882.3575903","DOIUrl":null,"url":null,"abstract":"The capacity degradation of battery can occur due to continuously used as primary energy source equipment. An accurate prediction of battery remaining useful life (RUL) is necessary to avoid system functionality failure. This study proposes battery RUL prediction using data-driven method based on a hybrid deep model of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM). CNN and LSTM are used to extract features from multiple measurable data in parallel. CNN extracts features of multi-channel charging profiles, whereas LSTM extracts features of historical capacity data of discharging profiles which related to time dependency. An error index is compared between single model LSTM and hybrid model CNN-LSTM. The result indicates that the proposed hybrid model outperforms the single model by up to 37%-61% in case of mean absolute percentage error.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid CNN-LSTM for Battery Remaining Useful Life Prediction with Charging Profiles Data\",\"authors\":\"Huzaifi Hafizhahullah, A. R. Yuliani, H. Pardede, A. Ramdan, Vicky Zilvan, Dikdik Krisnandi, Jimmy Kadar\",\"doi\":\"10.1145/3575882.3575903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capacity degradation of battery can occur due to continuously used as primary energy source equipment. An accurate prediction of battery remaining useful life (RUL) is necessary to avoid system functionality failure. This study proposes battery RUL prediction using data-driven method based on a hybrid deep model of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM). CNN and LSTM are used to extract features from multiple measurable data in parallel. CNN extracts features of multi-channel charging profiles, whereas LSTM extracts features of historical capacity data of discharging profiles which related to time dependency. An error index is compared between single model LSTM and hybrid model CNN-LSTM. The result indicates that the proposed hybrid model outperforms the single model by up to 37%-61% in case of mean absolute percentage error.\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid CNN-LSTM for Battery Remaining Useful Life Prediction with Charging Profiles Data
The capacity degradation of battery can occur due to continuously used as primary energy source equipment. An accurate prediction of battery remaining useful life (RUL) is necessary to avoid system functionality failure. This study proposes battery RUL prediction using data-driven method based on a hybrid deep model of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM). CNN and LSTM are used to extract features from multiple measurable data in parallel. CNN extracts features of multi-channel charging profiles, whereas LSTM extracts features of historical capacity data of discharging profiles which related to time dependency. An error index is compared between single model LSTM and hybrid model CNN-LSTM. The result indicates that the proposed hybrid model outperforms the single model by up to 37%-61% in case of mean absolute percentage error.