基于ica的逆FDA FKP识别

Zhongxi Sun
{"title":"基于ica的逆FDA FKP识别","authors":"Zhongxi Sun","doi":"10.1109/YAC.2018.8406376","DOIUrl":null,"url":null,"abstract":"ICA concerns high-order dependencies between variables. In this paper, a new feature extraction method is proposed by combining Inverse FDA with ICA. ICA is applied to sample images to provide the high-order statistical information and reduce dimension. Inverse FDA is used for discrimination. Experimental results on FKP database show that our proposed method is efficient.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"560 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FKP recognition using ICA-based inverse FDA\",\"authors\":\"Zhongxi Sun\",\"doi\":\"10.1109/YAC.2018.8406376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ICA concerns high-order dependencies between variables. In this paper, a new feature extraction method is proposed by combining Inverse FDA with ICA. ICA is applied to sample images to provide the high-order statistical information and reduce dimension. Inverse FDA is used for discrimination. Experimental results on FKP database show that our proposed method is efficient.\",\"PeriodicalId\":226586,\"journal\":{\"name\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"560 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2018.8406376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

ICA关注变量之间的高阶依赖关系。本文提出了一种将逆FDA与ICA相结合的特征提取方法。将ICA应用于样本图像,提供高阶统计信息和降维。逆FDA用于鉴别。在FKP数据库上的实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FKP recognition using ICA-based inverse FDA
ICA concerns high-order dependencies between variables. In this paper, a new feature extraction method is proposed by combining Inverse FDA with ICA. ICA is applied to sample images to provide the high-order statistical information and reduce dimension. Inverse FDA is used for discrimination. Experimental results on FKP database show that our proposed method is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信