基于高效粒子群优化的PID自整定的硬件实现

Chanon Khongprasongsiri, Punyapat Areerob, S. Boonto, Wasanchai Vongsantivanich
{"title":"基于高效粒子群优化的PID自整定的硬件实现","authors":"Chanon Khongprasongsiri, Punyapat Areerob, S. Boonto, Wasanchai Vongsantivanich","doi":"10.1109/ECTI-CON58255.2023.10153278","DOIUrl":null,"url":null,"abstract":"Severa1 intelligent control systems these days are utilized by the concept of automatically tuning, especially in proportional-integral-derivative (PID) controller. Furthermore, increasing sensors and actuators disrupt the conventional computing system, which has limited resources and is difficult to meet the timing requirement. This paper develops a hardware implementation of PID auto-tuning based on the particle swarm optimization (PSO) with the parallel architecture of particles and variables so that latency is heuristically minimal. The result shows that the proposed hardware performs 1000x and 800x compared to conventional microprocessors. From the evaluation process, performance and resource utilization are found to be satisfactory compared to conventional PID.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Implementation of PID Autotuning with Efficient Particle Swarm Optimization\",\"authors\":\"Chanon Khongprasongsiri, Punyapat Areerob, S. Boonto, Wasanchai Vongsantivanich\",\"doi\":\"10.1109/ECTI-CON58255.2023.10153278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severa1 intelligent control systems these days are utilized by the concept of automatically tuning, especially in proportional-integral-derivative (PID) controller. Furthermore, increasing sensors and actuators disrupt the conventional computing system, which has limited resources and is difficult to meet the timing requirement. This paper develops a hardware implementation of PID auto-tuning based on the particle swarm optimization (PSO) with the parallel architecture of particles and variables so that latency is heuristically minimal. The result shows that the proposed hardware performs 1000x and 800x compared to conventional microprocessors. From the evaluation process, performance and resource utilization are found to be satisfactory compared to conventional PID.\",\"PeriodicalId\":340768,\"journal\":{\"name\":\"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTI-CON58255.2023.10153278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,许多智能控制系统都采用了自动整定的概念,特别是在比例积分导数(PID)控制器中。此外,越来越多的传感器和执行器打破了传统的计算系统,该系统资源有限,难以满足时序要求。提出了一种基于粒子群优化的PID自整定的硬件实现方法,该方法采用粒子群和变量并行结构,使延时最小化。结果表明,与传统的微处理器相比,该硬件的性能分别提高了1000倍和800倍。从评价过程来看,与传统PID相比,该方法的性能和资源利用率都令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware Implementation of PID Autotuning with Efficient Particle Swarm Optimization
Severa1 intelligent control systems these days are utilized by the concept of automatically tuning, especially in proportional-integral-derivative (PID) controller. Furthermore, increasing sensors and actuators disrupt the conventional computing system, which has limited resources and is difficult to meet the timing requirement. This paper develops a hardware implementation of PID auto-tuning based on the particle swarm optimization (PSO) with the parallel architecture of particles and variables so that latency is heuristically minimal. The result shows that the proposed hardware performs 1000x and 800x compared to conventional microprocessors. From the evaluation process, performance and resource utilization are found to be satisfactory compared to conventional PID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信