稀疏变点VAR模型

A. Dufays, Li Zhuo, J. Rombouts, Yong Song
{"title":"稀疏变点VAR模型","authors":"A. Dufays, Li Zhuo, J. Rombouts, Yong Song","doi":"10.2139/ssrn.3461692","DOIUrl":null,"url":null,"abstract":"Change-point (CP) VAR models face a dimensionality curse due to the proliferation of parameters that arises when new breaks are detected. To handle large data sets, we introduce the Sparse CP-VAR model that determines which parameters truly vary when a break is detected. By doing so, the number of new parameters to estimate at each regime is drastically reduced and the CP dynamic becomes easier to interpret. The Sparse CP-VAR model disentangles the dynamics of the mean parameters and the covariance matrix. The former uses CP dynamics with shrinkage prior distributions while the latter is driven by an infinite hidden Markov framework. A simulation study highlights that the framework detects correctly the number of breaks per model parameter, and that it takes advantage of common breaks in the cross-sectional dimension to more precisely estimate them. Our applications on financial and macroeconomic systems highlight that the Sparse CP-VAR model helps interpreting the detected breaks. It turns out that many spillover effects have zero regimes meaning that they are zero for the entire sample period. Forecasting wise, the Sparse CP-VAR model is competitive against several recent time-varying parameter and CP-VAR models in terms of log predictive densities.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"59 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Change-Point VAR models\",\"authors\":\"A. Dufays, Li Zhuo, J. Rombouts, Yong Song\",\"doi\":\"10.2139/ssrn.3461692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Change-point (CP) VAR models face a dimensionality curse due to the proliferation of parameters that arises when new breaks are detected. To handle large data sets, we introduce the Sparse CP-VAR model that determines which parameters truly vary when a break is detected. By doing so, the number of new parameters to estimate at each regime is drastically reduced and the CP dynamic becomes easier to interpret. The Sparse CP-VAR model disentangles the dynamics of the mean parameters and the covariance matrix. The former uses CP dynamics with shrinkage prior distributions while the latter is driven by an infinite hidden Markov framework. A simulation study highlights that the framework detects correctly the number of breaks per model parameter, and that it takes advantage of common breaks in the cross-sectional dimension to more precisely estimate them. Our applications on financial and macroeconomic systems highlight that the Sparse CP-VAR model helps interpreting the detected breaks. It turns out that many spillover effects have zero regimes meaning that they are zero for the entire sample period. Forecasting wise, the Sparse CP-VAR model is competitive against several recent time-varying parameter and CP-VAR models in terms of log predictive densities.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"59 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3461692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3461692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

变化点(CP) VAR模型由于检测到新的中断时产生的参数激增而面临维度诅咒。为了处理大型数据集,我们引入了稀疏CP-VAR模型,该模型确定了当检测到中断时哪些参数真正变化。通过这样做,在每个状态下估计的新参数的数量大大减少,CP动态变得更容易解释。稀疏CP-VAR模型分解了平均参数和协方差矩阵的动态关系。前者使用具有收缩先验分布的CP动态,后者由无限隐马尔可夫框架驱动。仿真研究表明,该框架可以正确地检测每个模型参数的断裂数,并利用截面尺寸中的常见断裂来更精确地估计它们。我们在金融和宏观经济系统上的应用强调了稀疏CP-VAR模型有助于解释检测到的中断。事实证明,许多溢出效应具有零机制,这意味着它们在整个样本周期内为零。在预测方面,稀疏CP-VAR模型在对数预测密度方面与最近的几个时变参数和CP-VAR模型相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Change-Point VAR models
Change-point (CP) VAR models face a dimensionality curse due to the proliferation of parameters that arises when new breaks are detected. To handle large data sets, we introduce the Sparse CP-VAR model that determines which parameters truly vary when a break is detected. By doing so, the number of new parameters to estimate at each regime is drastically reduced and the CP dynamic becomes easier to interpret. The Sparse CP-VAR model disentangles the dynamics of the mean parameters and the covariance matrix. The former uses CP dynamics with shrinkage prior distributions while the latter is driven by an infinite hidden Markov framework. A simulation study highlights that the framework detects correctly the number of breaks per model parameter, and that it takes advantage of common breaks in the cross-sectional dimension to more precisely estimate them. Our applications on financial and macroeconomic systems highlight that the Sparse CP-VAR model helps interpreting the detected breaks. It turns out that many spillover effects have zero regimes meaning that they are zero for the entire sample period. Forecasting wise, the Sparse CP-VAR model is competitive against several recent time-varying parameter and CP-VAR models in terms of log predictive densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信