{"title":"条件质点,时间一致性和混合凸性","authors":"Fabio Bellini, V. Bignozzi, Giovanni Puccetti","doi":"10.2139/ssrn.3009354","DOIUrl":null,"url":null,"abstract":"We study conditional expectiles, defined as a natural generalisation of conditional expectations by means of the minimisation of an asymmetric quadratic loss function. We show that conditional expectiles can be equivalently characterised by a conditional first order condition and we derive their main properties. For possible applications as dynamic risk measures, we discuss their time consistency properties.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Conditional Expectiles, Time Consistency and Mixture Convexity Properties\",\"authors\":\"Fabio Bellini, V. Bignozzi, Giovanni Puccetti\",\"doi\":\"10.2139/ssrn.3009354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study conditional expectiles, defined as a natural generalisation of conditional expectations by means of the minimisation of an asymmetric quadratic loss function. We show that conditional expectiles can be equivalently characterised by a conditional first order condition and we derive their main properties. For possible applications as dynamic risk measures, we discuss their time consistency properties.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3009354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3009354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conditional Expectiles, Time Consistency and Mixture Convexity Properties
We study conditional expectiles, defined as a natural generalisation of conditional expectations by means of the minimisation of an asymmetric quadratic loss function. We show that conditional expectiles can be equivalently characterised by a conditional first order condition and we derive their main properties. For possible applications as dynamic risk measures, we discuss their time consistency properties.