{"title":"密集时间下推自动机","authors":"P. Abdulla, M. Atig, Jari Stenman","doi":"10.1109/LICS.2012.15","DOIUrl":null,"url":null,"abstract":"We propose a model that captures the behavior of real-time recursive systems. To that end, we introduce dense-timed pushdown automata that extend the classical models of pushdown automata and timed automata, in the sense that the automaton operates on a finite set of real-valued clocks, and each symbol in the stack is equipped with a real-valued clock representing its \"age\". The model induces a transition system that is infinite in two dimensions, namely it gives rise to a stack with an unbounded number of symbols each of which with a real-valued clock. The main contribution of the paper is an EXPTIME-complete algorithm for solving the reachability problem for dense-timed pushdown automata.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Dense-Timed Pushdown Automata\",\"authors\":\"P. Abdulla, M. Atig, Jari Stenman\",\"doi\":\"10.1109/LICS.2012.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a model that captures the behavior of real-time recursive systems. To that end, we introduce dense-timed pushdown automata that extend the classical models of pushdown automata and timed automata, in the sense that the automaton operates on a finite set of real-valued clocks, and each symbol in the stack is equipped with a real-valued clock representing its \\\"age\\\". The model induces a transition system that is infinite in two dimensions, namely it gives rise to a stack with an unbounded number of symbols each of which with a real-valued clock. The main contribution of the paper is an EXPTIME-complete algorithm for solving the reachability problem for dense-timed pushdown automata.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a model that captures the behavior of real-time recursive systems. To that end, we introduce dense-timed pushdown automata that extend the classical models of pushdown automata and timed automata, in the sense that the automaton operates on a finite set of real-valued clocks, and each symbol in the stack is equipped with a real-valued clock representing its "age". The model induces a transition system that is infinite in two dimensions, namely it gives rise to a stack with an unbounded number of symbols each of which with a real-valued clock. The main contribution of the paper is an EXPTIME-complete algorithm for solving the reachability problem for dense-timed pushdown automata.