基于cnn的城市场景系列图像传播损耗建模

Kenya Shimizu, T. Nakanishi, M. Takikawa, Y. Inasawa
{"title":"基于cnn的城市场景系列图像传播损耗建模","authors":"Kenya Shimizu, T. Nakanishi, M. Takikawa, Y. Inasawa","doi":"10.1109/AP-S/USNC-URSI47032.2022.9887239","DOIUrl":null,"url":null,"abstract":"Propagation loss modeling is considered to be important for the efficient planning of any wireless communication system. We present a novel convolutional neural network (CNN)-based propagation loss modeling based on field measurements in urban scenarios. We consider bird’s-eye images as input data that include the information of buildings, intersections, and roadways. Each image represents a different spatial segment of main propagation paths between a transmitter and a receiver. Multiple feature extraction layers based on CNNs are used. The proposed model shows its superior performance compared with the COST 231 Walfisch-Ikegami model.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-Based Propagation Loss Modeling Based on a Series of Images in Urban Scenarios\",\"authors\":\"Kenya Shimizu, T. Nakanishi, M. Takikawa, Y. Inasawa\",\"doi\":\"10.1109/AP-S/USNC-URSI47032.2022.9887239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propagation loss modeling is considered to be important for the efficient planning of any wireless communication system. We present a novel convolutional neural network (CNN)-based propagation loss modeling based on field measurements in urban scenarios. We consider bird’s-eye images as input data that include the information of buildings, intersections, and roadways. Each image represents a different spatial segment of main propagation paths between a transmitter and a receiver. Multiple feature extraction layers based on CNNs are used. The proposed model shows its superior performance compared with the COST 231 Walfisch-Ikegami model.\",\"PeriodicalId\":371560,\"journal\":{\"name\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传播损耗建模对于任何无线通信系统的有效规划都是非常重要的。我们提出了一种基于卷积神经网络(CNN)的基于城市场景现场测量的传播损失模型。我们将鸟瞰图像作为输入数据,其中包括建筑物、十字路口和道路的信息。每个图像代表发射器和接收器之间主要传播路径的不同空间段。采用了基于cnn的多个特征提取层。与COST 231 Walfisch-Ikegami模型相比,该模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-Based Propagation Loss Modeling Based on a Series of Images in Urban Scenarios
Propagation loss modeling is considered to be important for the efficient planning of any wireless communication system. We present a novel convolutional neural network (CNN)-based propagation loss modeling based on field measurements in urban scenarios. We consider bird’s-eye images as input data that include the information of buildings, intersections, and roadways. Each image represents a different spatial segment of main propagation paths between a transmitter and a receiver. Multiple feature extraction layers based on CNNs are used. The proposed model shows its superior performance compared with the COST 231 Walfisch-Ikegami model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信