基于聚类的合并树数据可视化:缺失预期的挑战

A. Preston, K. Ma
{"title":"基于聚类的合并树数据可视化:缺失预期的挑战","authors":"A. Preston, K. Ma","doi":"10.1109/SciVis.2018.8823586","DOIUrl":null,"url":null,"abstract":"Scientific simulations are yielding increasing amounts of data; to visualize the full output from a simulation, one must first reduce clutter and obstruction. Clustering algorithms are common tools for condensing information and decreasing clutter when analyzing and visualizing simulation output. Often, simulation data have intuitive groupings. In some cases, though, such as merger trees from N-body dark matter simulations, there are limited expectations for clustering results. We investigate cluster-based visualization design for merger tree data, testing whether multidimensional encodings and opening the \"black box\" can allow for meaningful representation and exploration of these data.","PeriodicalId":306021,"journal":{"name":"2018 IEEE Scientific Visualization Conference (SciVis)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster-Based Visualization for Merger Tree Data: The Challenge of Missing Expectations\",\"authors\":\"A. Preston, K. Ma\",\"doi\":\"10.1109/SciVis.2018.8823586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific simulations are yielding increasing amounts of data; to visualize the full output from a simulation, one must first reduce clutter and obstruction. Clustering algorithms are common tools for condensing information and decreasing clutter when analyzing and visualizing simulation output. Often, simulation data have intuitive groupings. In some cases, though, such as merger trees from N-body dark matter simulations, there are limited expectations for clustering results. We investigate cluster-based visualization design for merger tree data, testing whether multidimensional encodings and opening the \\\"black box\\\" can allow for meaningful representation and exploration of these data.\",\"PeriodicalId\":306021,\"journal\":{\"name\":\"2018 IEEE Scientific Visualization Conference (SciVis)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Scientific Visualization Conference (SciVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SciVis.2018.8823586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Scientific Visualization Conference (SciVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SciVis.2018.8823586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学模拟正在产生越来越多的数据;为了可视化模拟的完整输出,必须首先减少杂波和障碍物。聚类算法是分析和可视化仿真输出时压缩信息和减少杂波的常用工具。通常,模拟数据具有直观的分组。然而,在某些情况下,比如来自n体暗物质模拟的合并树,对聚类结果的期望有限。我们研究了合并树数据的基于聚类的可视化设计,测试了多维编码和打开“黑盒”是否可以允许对这些数据进行有意义的表示和探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster-Based Visualization for Merger Tree Data: The Challenge of Missing Expectations
Scientific simulations are yielding increasing amounts of data; to visualize the full output from a simulation, one must first reduce clutter and obstruction. Clustering algorithms are common tools for condensing information and decreasing clutter when analyzing and visualizing simulation output. Often, simulation data have intuitive groupings. In some cases, though, such as merger trees from N-body dark matter simulations, there are limited expectations for clustering results. We investigate cluster-based visualization design for merger tree data, testing whether multidimensional encodings and opening the "black box" can allow for meaningful representation and exploration of these data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信