纳秒脉冲大气压等离子体在水中的模拟

T. Petrova, M. Johnson, D. Boris, S. Walton
{"title":"纳秒脉冲大气压等离子体在水中的模拟","authors":"T. Petrova, M. Johnson, D. Boris, S. Walton","doi":"10.1109/icops45751.2022.9813031","DOIUrl":null,"url":null,"abstract":"Recently, there is a rapidly growing body of work studying plasma-based water treatment for applications within the medical, environmental, and agriculture sectors. Atmospheric pressure plasmas produced by high voltage pulses with 10’s of nanoseconds in duration are well suited for treatment of liquids 1 , 2 , 3 and surfaces. Modeling of nanosecond pulsed plasma is challenging due to plasma complexity, as well as different reaction time-scales; from nanoseconds to seconds. Moreover, the plasma is affected by sheath formation 4 and reactions of aqueous species with gas phase plasma species at the plasma/liquid interface 5 . We present a time-dependent global model to study the decay of various plasma species in helium carrier gas and obtain the trends with changing the pulse frequency and pulse duration. The model in conjunction of voltage measurements and OES diagnostics provide a useful tool for such analyses.","PeriodicalId":175964,"journal":{"name":"2022 IEEE International Conference on Plasma Science (ICOPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of a Nanosecond Pulsed Atmospheric Pressure Plasma on Water\",\"authors\":\"T. Petrova, M. Johnson, D. Boris, S. Walton\",\"doi\":\"10.1109/icops45751.2022.9813031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there is a rapidly growing body of work studying plasma-based water treatment for applications within the medical, environmental, and agriculture sectors. Atmospheric pressure plasmas produced by high voltage pulses with 10’s of nanoseconds in duration are well suited for treatment of liquids 1 , 2 , 3 and surfaces. Modeling of nanosecond pulsed plasma is challenging due to plasma complexity, as well as different reaction time-scales; from nanoseconds to seconds. Moreover, the plasma is affected by sheath formation 4 and reactions of aqueous species with gas phase plasma species at the plasma/liquid interface 5 . We present a time-dependent global model to study the decay of various plasma species in helium carrier gas and obtain the trends with changing the pulse frequency and pulse duration. The model in conjunction of voltage measurements and OES diagnostics provide a useful tool for such analyses.\",\"PeriodicalId\":175964,\"journal\":{\"name\":\"2022 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icops45751.2022.9813031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icops45751.2022.9813031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,研究等离子体水处理在医疗、环境和农业部门中的应用的工作正在迅速增加。由持续时间为10纳秒的高压脉冲产生的大气压等离子体非常适合处理液体1、2、3和表面。由于等离子体的复杂性以及不同的反应时间尺度,纳秒脉冲等离子体的建模具有挑战性;从纳秒到秒。此外,等离子体还受到鞘层形成4以及水相与气相等离子体在等离子体/液体界面处的反应5的影响。我们建立了一个随时间变化的全局模型,研究了氦载气中各种等离子体的衰变,并得到了随脉冲频率和脉冲持续时间变化的趋势。该模型结合电压测量和OES诊断为此类分析提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of a Nanosecond Pulsed Atmospheric Pressure Plasma on Water
Recently, there is a rapidly growing body of work studying plasma-based water treatment for applications within the medical, environmental, and agriculture sectors. Atmospheric pressure plasmas produced by high voltage pulses with 10’s of nanoseconds in duration are well suited for treatment of liquids 1 , 2 , 3 and surfaces. Modeling of nanosecond pulsed plasma is challenging due to plasma complexity, as well as different reaction time-scales; from nanoseconds to seconds. Moreover, the plasma is affected by sheath formation 4 and reactions of aqueous species with gas phase plasma species at the plasma/liquid interface 5 . We present a time-dependent global model to study the decay of various plasma species in helium carrier gas and obtain the trends with changing the pulse frequency and pulse duration. The model in conjunction of voltage measurements and OES diagnostics provide a useful tool for such analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信