语音信号中共振峰的递归跟踪

M. Niranjan, I. Cox, S. L. Hingorani
{"title":"语音信号中共振峰的递归跟踪","authors":"M. Niranjan, I. Cox, S. L. Hingorani","doi":"10.1109/ICASSP.1994.389683","DOIUrl":null,"url":null,"abstract":"We report on an approach to recursively track parameters of a cascade formant model. The work follows from that of Rigoll (1986) who showed how an extended Kalman filter (EKF) may be used for recursive estimation of formants. The success of this approach depends on our ability to tune the model noise variances properly. The approach also fails when there is a mismatch between the complexity of the data and that of the model (i.e. wrong number of formants). We show how a multiple model (MM) approach may be used to overcome these problems. We run several models in parallel and use the innovation probabilities of the EKF to recursively evaluate the likelihoods of each of the models. Experimental results demonstrate the feasibility of the approach; accurate switching between models and good tracking of the formants is achieved.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recursive tracking of formants in speech signals\",\"authors\":\"M. Niranjan, I. Cox, S. L. Hingorani\",\"doi\":\"10.1109/ICASSP.1994.389683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on an approach to recursively track parameters of a cascade formant model. The work follows from that of Rigoll (1986) who showed how an extended Kalman filter (EKF) may be used for recursive estimation of formants. The success of this approach depends on our ability to tune the model noise variances properly. The approach also fails when there is a mismatch between the complexity of the data and that of the model (i.e. wrong number of formants). We show how a multiple model (MM) approach may be used to overcome these problems. We run several models in parallel and use the innovation probabilities of the EKF to recursively evaluate the likelihoods of each of the models. Experimental results demonstrate the feasibility of the approach; accurate switching between models and good tracking of the formants is achieved.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们报告了一种递归跟踪级联形成模型参数的方法。这项工作是从Rigoll(1986)开始的,他展示了如何使用扩展卡尔曼滤波器(EKF)对共振峰进行递归估计。这种方法的成功取决于我们正确调整模型噪声方差的能力。当数据的复杂性和模型的复杂性不匹配时(例如,共振峰的数量错误),这种方法也会失败。我们展示了如何使用多模型(MM)方法来克服这些问题。我们并行运行多个模型,并使用EKF的创新概率递归地评估每个模型的可能性。实验结果证明了该方法的可行性;实现了模型之间的精确切换和对共振峰的良好跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive tracking of formants in speech signals
We report on an approach to recursively track parameters of a cascade formant model. The work follows from that of Rigoll (1986) who showed how an extended Kalman filter (EKF) may be used for recursive estimation of formants. The success of this approach depends on our ability to tune the model noise variances properly. The approach also fails when there is a mismatch between the complexity of the data and that of the model (i.e. wrong number of formants). We show how a multiple model (MM) approach may be used to overcome these problems. We run several models in parallel and use the innovation probabilities of the EKF to recursively evaluate the likelihoods of each of the models. Experimental results demonstrate the feasibility of the approach; accurate switching between models and good tracking of the formants is achieved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信