疾病进展时间建模的图数据库方法

Hoda Memarzadeh, Nasser Ghadiri, Sara Parikhah Zarmehr
{"title":"疾病进展时间建模的图数据库方法","authors":"Hoda Memarzadeh, Nasser Ghadiri, Sara Parikhah Zarmehr","doi":"10.1109/ICCKE.2018.8566311","DOIUrl":null,"url":null,"abstract":"The high cost of managing chronic diseases for individuals and governments, as well as the negative impact on the quality of life, highlights the importance of controlling and preventing the chronic disease progression. Understanding the disease progression model is one of the first steps, which can lead to more effective planning for interventions. Most of the different approaches for statistical modeling of disease progression work with the graph. On the other hand longitudinal medical data could be represented in the form of a graph and modeling them in this way has a great deal of potential for analyzing and tracking medical event. Data structures, data model features, query facilities and special commands in graph database for traversing and detection patterns could be useful for building summarized information based on transitions between different stages of a particular disease in individual graphs. Given the fact that clinical data is collected at different times, software and formats, there is a need for a flexible framework for data linkage. Use of graph databases brings this flexibility into account and provide a highly scalable framework for data integrating and linkage. In this study, at first simple medical observations related to patients with varying degrees of Alzheimer's disease stored in a graph database (Neo4j) and then by reviewing the capabilities of this environment in building transition graph of different stages of the disease, suggestions for the model development with more details were presented.","PeriodicalId":283700,"journal":{"name":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Graph Database Approach for Temporal Modeling of Disease Progression\",\"authors\":\"Hoda Memarzadeh, Nasser Ghadiri, Sara Parikhah Zarmehr\",\"doi\":\"10.1109/ICCKE.2018.8566311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high cost of managing chronic diseases for individuals and governments, as well as the negative impact on the quality of life, highlights the importance of controlling and preventing the chronic disease progression. Understanding the disease progression model is one of the first steps, which can lead to more effective planning for interventions. Most of the different approaches for statistical modeling of disease progression work with the graph. On the other hand longitudinal medical data could be represented in the form of a graph and modeling them in this way has a great deal of potential for analyzing and tracking medical event. Data structures, data model features, query facilities and special commands in graph database for traversing and detection patterns could be useful for building summarized information based on transitions between different stages of a particular disease in individual graphs. Given the fact that clinical data is collected at different times, software and formats, there is a need for a flexible framework for data linkage. Use of graph databases brings this flexibility into account and provide a highly scalable framework for data integrating and linkage. In this study, at first simple medical observations related to patients with varying degrees of Alzheimer's disease stored in a graph database (Neo4j) and then by reviewing the capabilities of this environment in building transition graph of different stages of the disease, suggestions for the model development with more details were presented.\",\"PeriodicalId\":283700,\"journal\":{\"name\":\"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2018.8566311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2018.8566311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

个人和政府管理慢性病的高昂费用,以及对生活质量的负面影响,凸显了控制和预防慢性病进展的重要性。了解疾病进展模式是第一步,它可以导致更有效的干预计划。疾病进展的统计建模的大多数不同方法都使用图表。另一方面,纵向医疗数据可以用图形的形式表示,这种建模方式对分析和跟踪医疗事件具有很大的潜力。图数据库中用于遍历和检测模式的数据结构、数据模型特征、查询工具和特殊命令可用于在单个图中构建基于特定疾病不同阶段之间转换的汇总信息。鉴于临床数据是在不同时间、不同软件和不同格式收集的,因此需要一个灵活的数据链接框架。图形数据库的使用将这种灵活性考虑在内,并为数据集成和链接提供了一个高度可扩展的框架。在本研究中,首先将不同程度阿尔茨海默病患者的简单医学观察数据存储在图形数据库(Neo4j)中,然后通过审查该环境在构建疾病不同阶段过渡图方面的能力,提出了更详细的模型开发建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph Database Approach for Temporal Modeling of Disease Progression
The high cost of managing chronic diseases for individuals and governments, as well as the negative impact on the quality of life, highlights the importance of controlling and preventing the chronic disease progression. Understanding the disease progression model is one of the first steps, which can lead to more effective planning for interventions. Most of the different approaches for statistical modeling of disease progression work with the graph. On the other hand longitudinal medical data could be represented in the form of a graph and modeling them in this way has a great deal of potential for analyzing and tracking medical event. Data structures, data model features, query facilities and special commands in graph database for traversing and detection patterns could be useful for building summarized information based on transitions between different stages of a particular disease in individual graphs. Given the fact that clinical data is collected at different times, software and formats, there is a need for a flexible framework for data linkage. Use of graph databases brings this flexibility into account and provide a highly scalable framework for data integrating and linkage. In this study, at first simple medical observations related to patients with varying degrees of Alzheimer's disease stored in a graph database (Neo4j) and then by reviewing the capabilities of this environment in building transition graph of different stages of the disease, suggestions for the model development with more details were presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信