不定义图表模式:基于图像的方法

Yannis Yuan
{"title":"不定义图表模式:基于图像的方法","authors":"Yannis Yuan","doi":"10.2139/ssrn.3935169","DOIUrl":null,"url":null,"abstract":"Academic literature of asset technical analysis and price series pattern recognition typically involves characterising heuristic chart patterns with piecewise linear functions and filtering characteristic price sequences with local regression. We propose an image-based approach to encode price series as a two-dimensional density matrix and analyse price geometries with convolution filters. The method scales local prices based on volatility within a sliding window and creates a density array via one-hot encoding and aggregation. By comparing convolutional network classifiers and autoregressive networks, we show that the image-based price representation improves pattern-related feature interpretability. However, forecasting future price movements remains challenging due to global insignificance of consistent patterns. Period-adaptive pattern filters are necessary to denoise series and separate patterns prior to image-based encoding and forecasting.","PeriodicalId":260048,"journal":{"name":"Capital Markets: Market Efficiency eJournal","volume":"553 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undefine Chart Patters: An Image-Based Approach\",\"authors\":\"Yannis Yuan\",\"doi\":\"10.2139/ssrn.3935169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Academic literature of asset technical analysis and price series pattern recognition typically involves characterising heuristic chart patterns with piecewise linear functions and filtering characteristic price sequences with local regression. We propose an image-based approach to encode price series as a two-dimensional density matrix and analyse price geometries with convolution filters. The method scales local prices based on volatility within a sliding window and creates a density array via one-hot encoding and aggregation. By comparing convolutional network classifiers and autoregressive networks, we show that the image-based price representation improves pattern-related feature interpretability. However, forecasting future price movements remains challenging due to global insignificance of consistent patterns. Period-adaptive pattern filters are necessary to denoise series and separate patterns prior to image-based encoding and forecasting.\",\"PeriodicalId\":260048,\"journal\":{\"name\":\"Capital Markets: Market Efficiency eJournal\",\"volume\":\"553 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Capital Markets: Market Efficiency eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3935169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capital Markets: Market Efficiency eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3935169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

资产技术分析和价格序列模式识别的学术文献通常涉及用分段线性函数描述启发式图表模式和用局部回归过滤特征价格序列。我们提出了一种基于图像的方法将价格序列编码为二维密度矩阵,并使用卷积滤波器分析价格几何形状。该方法根据滑动窗口内的波动性缩放本地价格,并通过one-hot编码和聚合创建密度数组。通过比较卷积网络分类器和自回归网络,我们发现基于图像的价格表示提高了模式相关特征的可解释性。然而,预测未来的价格走势仍然具有挑战性,因为全球一致性模式不重要。周期自适应模式滤波器是在基于图像的编码和预测之前对序列和分离模式进行降噪所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undefine Chart Patters: An Image-Based Approach
Academic literature of asset technical analysis and price series pattern recognition typically involves characterising heuristic chart patterns with piecewise linear functions and filtering characteristic price sequences with local regression. We propose an image-based approach to encode price series as a two-dimensional density matrix and analyse price geometries with convolution filters. The method scales local prices based on volatility within a sliding window and creates a density array via one-hot encoding and aggregation. By comparing convolutional network classifiers and autoregressive networks, we show that the image-based price representation improves pattern-related feature interpretability. However, forecasting future price movements remains challenging due to global insignificance of consistent patterns. Period-adaptive pattern filters are necessary to denoise series and separate patterns prior to image-based encoding and forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信