{"title":"对容错商业系统进行基准测试的方法","authors":"T. Tsai, R. Iyer, Doug Jewitt","doi":"10.1109/FTCS.1996.534616","DOIUrl":null,"url":null,"abstract":"This paper presents a benchmark for dependable systems. The benchmark consists of two metrics, number of catastrophic incidents and performance degradation, which are obtained by a tool that (1) generates synthetic workloads that produce a high level of CPU, memory, and I/O activity and (2) injects CPU, memory, and I/O faults according to an injection strategy. The benchmark has been installed on two TMR-based prototype machines: TMR Prototype A and TMR Prototype B. An implementation for a third prototype, is based on a duplex architecture, is in progress. The results demonstrate the utility of the benchmark in comparing the system-level fault tolerance of these machines and in providing insight into their design. In particular the benchmark shows that Prototype B suffers fewer catastrophic incidents than Prototype A under the same workload conditions and fault injection method. However Prototype B also suffers more performance degradation in the presence of faults, which might be an important concern for time-critical applications.","PeriodicalId":191163,"journal":{"name":"Proceedings of Annual Symposium on Fault Tolerant Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"An approach towards benchmarking of fault-tolerant commercial systems\",\"authors\":\"T. Tsai, R. Iyer, Doug Jewitt\",\"doi\":\"10.1109/FTCS.1996.534616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a benchmark for dependable systems. The benchmark consists of two metrics, number of catastrophic incidents and performance degradation, which are obtained by a tool that (1) generates synthetic workloads that produce a high level of CPU, memory, and I/O activity and (2) injects CPU, memory, and I/O faults according to an injection strategy. The benchmark has been installed on two TMR-based prototype machines: TMR Prototype A and TMR Prototype B. An implementation for a third prototype, is based on a duplex architecture, is in progress. The results demonstrate the utility of the benchmark in comparing the system-level fault tolerance of these machines and in providing insight into their design. In particular the benchmark shows that Prototype B suffers fewer catastrophic incidents than Prototype A under the same workload conditions and fault injection method. However Prototype B also suffers more performance degradation in the presence of faults, which might be an important concern for time-critical applications.\",\"PeriodicalId\":191163,\"journal\":{\"name\":\"Proceedings of Annual Symposium on Fault Tolerant Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Annual Symposium on Fault Tolerant Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1996.534616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Annual Symposium on Fault Tolerant Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1996.534616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach towards benchmarking of fault-tolerant commercial systems
This paper presents a benchmark for dependable systems. The benchmark consists of two metrics, number of catastrophic incidents and performance degradation, which are obtained by a tool that (1) generates synthetic workloads that produce a high level of CPU, memory, and I/O activity and (2) injects CPU, memory, and I/O faults according to an injection strategy. The benchmark has been installed on two TMR-based prototype machines: TMR Prototype A and TMR Prototype B. An implementation for a third prototype, is based on a duplex architecture, is in progress. The results demonstrate the utility of the benchmark in comparing the system-level fault tolerance of these machines and in providing insight into their design. In particular the benchmark shows that Prototype B suffers fewer catastrophic incidents than Prototype A under the same workload conditions and fault injection method. However Prototype B also suffers more performance degradation in the presence of faults, which might be an important concern for time-critical applications.