模型-数据生态系统:挑战、工具和趋势

P. Haas
{"title":"模型-数据生态系统:挑战、工具和趋势","authors":"P. Haas","doi":"10.1145/2594538.2594562","DOIUrl":null,"url":null,"abstract":"In the past few years, research around (big) data management has begun to intertwine with research around predictive modeling and simulation in novel and interesting ways. Driving this trend is an increasing recognition that information contained in real-world data must be combined with information from domain experts, as embodied in simulation models, in order to enable robust decision making under uncertainty. Simulation models of large, complex systems (traffic, biology, population well-being) consume and produce massive amounts of data and compound the challenges of traditional information management. We survey some challenges, mathematical tools, and future directions in the emerging research area of model-data ecosystems. Topics include (i) methods for enabling data-intensive simulation, (ii) simulation and information integration, and (iii) simulation metamodeling for guiding the generation of simulated data and the collection of real-world data.","PeriodicalId":302451,"journal":{"name":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model-data Ecosystems: challenges, tools, and trends\",\"authors\":\"P. Haas\",\"doi\":\"10.1145/2594538.2594562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, research around (big) data management has begun to intertwine with research around predictive modeling and simulation in novel and interesting ways. Driving this trend is an increasing recognition that information contained in real-world data must be combined with information from domain experts, as embodied in simulation models, in order to enable robust decision making under uncertainty. Simulation models of large, complex systems (traffic, biology, population well-being) consume and produce massive amounts of data and compound the challenges of traditional information management. We survey some challenges, mathematical tools, and future directions in the emerging research area of model-data ecosystems. Topics include (i) methods for enabling data-intensive simulation, (ii) simulation and information integration, and (iii) simulation metamodeling for guiding the generation of simulated data and the collection of real-world data.\",\"PeriodicalId\":302451,\"journal\":{\"name\":\"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2594538.2594562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594538.2594562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的几年里,关于(大)数据管理的研究已经开始以新颖有趣的方式与预测建模和模拟的研究交织在一起。推动这一趋势的是人们越来越认识到,现实世界数据中包含的信息必须与来自领域专家的信息相结合,体现在仿真模型中,以便在不确定的情况下做出稳健的决策。大型复杂系统(交通、生物、人口福利)的仿真模型消耗和产生大量数据,并使传统信息管理面临的挑战复杂化。我们调查了模型-数据生态系统新兴研究领域的一些挑战、数学工具和未来方向。主题包括(i)实现数据密集型仿真的方法,(ii)仿真和信息集成,以及(iii)用于指导生成仿真数据和收集真实世界数据的仿真元建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-data Ecosystems: challenges, tools, and trends
In the past few years, research around (big) data management has begun to intertwine with research around predictive modeling and simulation in novel and interesting ways. Driving this trend is an increasing recognition that information contained in real-world data must be combined with information from domain experts, as embodied in simulation models, in order to enable robust decision making under uncertainty. Simulation models of large, complex systems (traffic, biology, population well-being) consume and produce massive amounts of data and compound the challenges of traditional information management. We survey some challenges, mathematical tools, and future directions in the emerging research area of model-data ecosystems. Topics include (i) methods for enabling data-intensive simulation, (ii) simulation and information integration, and (iii) simulation metamodeling for guiding the generation of simulated data and the collection of real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信