贝塞尔k形参数在对偶树复小波变换域中用于癫痫和发作的检测

A. Das, M. Bhuiyan
{"title":"贝塞尔k形参数在对偶树复小波变换域中用于癫痫和发作的检测","authors":"A. Das, M. Bhuiyan","doi":"10.1109/ICECE.2014.7026964","DOIUrl":null,"url":null,"abstract":"In this paper, a statistical analysis of EEG signals is carried out in the dual tree complex wavelet transform (DT-CWT) domain. It is shown that Bessel k-form(BKF) pdf can suitably model the DT-CWT sub-bands and the BKF parameters in various DT-CWT sub-bands can discriminate various types of EEG data effectively. Next these parameters are utilized by the SVM-based classifiers to classify the EEG data. The classification performance is studied for three clinically relevant cases including healthy vs seizure, non-seizure vs seizure and inter-ictal vs ictal recordings. The proposed method provides 100% accuracy with 100% sensitivity and 100% specificity in all the cases. In addition, in comparison to several state-of-the-art algorithms, the proposed method has also been shown to be computationally fast.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bessel k-form parameters in the dual tree complex wavelet transform domain for the detection of epilepsy and seizure\",\"authors\":\"A. Das, M. Bhuiyan\",\"doi\":\"10.1109/ICECE.2014.7026964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a statistical analysis of EEG signals is carried out in the dual tree complex wavelet transform (DT-CWT) domain. It is shown that Bessel k-form(BKF) pdf can suitably model the DT-CWT sub-bands and the BKF parameters in various DT-CWT sub-bands can discriminate various types of EEG data effectively. Next these parameters are utilized by the SVM-based classifiers to classify the EEG data. The classification performance is studied for three clinically relevant cases including healthy vs seizure, non-seizure vs seizure and inter-ictal vs ictal recordings. The proposed method provides 100% accuracy with 100% sensitivity and 100% specificity in all the cases. In addition, in comparison to several state-of-the-art algorithms, the proposed method has also been shown to be computationally fast.\",\"PeriodicalId\":335492,\"journal\":{\"name\":\"8th International Conference on Electrical and Computer Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th International Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE.2014.7026964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7026964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文在对偶树复小波变换(DT-CWT)域对脑电信号进行了统计分析。结果表明,贝塞尔k-form(BKF) pdf可以很好地对DT-CWT子带进行建模,并且各个DT-CWT子带中的BKF参数可以有效地区分不同类型的脑电数据。接下来,基于支持向量机的分类器利用这些参数对EEG数据进行分类。研究了三种临床相关病例的分类表现,包括健康与发作、非发作与发作、间期与发作记录。该方法在所有病例中均具有100%的准确度、100%的灵敏度和100%的特异性。此外,与几种最先进的算法相比,所提出的方法也被证明是计算速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bessel k-form parameters in the dual tree complex wavelet transform domain for the detection of epilepsy and seizure
In this paper, a statistical analysis of EEG signals is carried out in the dual tree complex wavelet transform (DT-CWT) domain. It is shown that Bessel k-form(BKF) pdf can suitably model the DT-CWT sub-bands and the BKF parameters in various DT-CWT sub-bands can discriminate various types of EEG data effectively. Next these parameters are utilized by the SVM-based classifiers to classify the EEG data. The classification performance is studied for three clinically relevant cases including healthy vs seizure, non-seizure vs seizure and inter-ictal vs ictal recordings. The proposed method provides 100% accuracy with 100% sensitivity and 100% specificity in all the cases. In addition, in comparison to several state-of-the-art algorithms, the proposed method has also been shown to be computationally fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信