基于约束短语树的多词短语建模,改进会话语音的主题建模

Timothy J. Hazen, Fred Richardson
{"title":"基于约束短语树的多词短语建模,改进会话语音的主题建模","authors":"Timothy J. Hazen, Fred Richardson","doi":"10.1109/SLT.2012.6424226","DOIUrl":null,"url":null,"abstract":"Latent topic modeling has proven to be an effective means for learning the underlying semantic content within document collections. Latent topic modeling has traditionally been applied to bag-of-words representations that ignore word sequence information that can aid in semantic understanding. In this work we introduce a method for efficiently incorporating arbitrarily long word sequences into a topic modeling approach. This method iteratively constructs a constrained set of phrase trees in an unsupervised fashion from a document collection using weighted pointwise mutual information statistics to guide the process. In experiments on the Fisher Corpus of conversational speech, the incorporation of learned phrases into a latent topic model yielded significant improvements in the unsupervised discovery of the known topics present within the data.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling multiword phrases with constrained phrase trees for improved topic modeling of conversational speech\",\"authors\":\"Timothy J. Hazen, Fred Richardson\",\"doi\":\"10.1109/SLT.2012.6424226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent topic modeling has proven to be an effective means for learning the underlying semantic content within document collections. Latent topic modeling has traditionally been applied to bag-of-words representations that ignore word sequence information that can aid in semantic understanding. In this work we introduce a method for efficiently incorporating arbitrarily long word sequences into a topic modeling approach. This method iteratively constructs a constrained set of phrase trees in an unsupervised fashion from a document collection using weighted pointwise mutual information statistics to guide the process. In experiments on the Fisher Corpus of conversational speech, the incorporation of learned phrases into a latent topic model yielded significant improvements in the unsupervised discovery of the known topics present within the data.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

潜在主题建模已被证明是学习文档集合中潜在语义内容的有效方法。传统上,潜在主题建模被应用于忽略有助于语义理解的单词序列信息的词袋表示。在这项工作中,我们介绍了一种有效地将任意长词序列合并到主题建模方法中的方法。该方法使用加权的点向互信息统计来指导过程,以无监督的方式从文档集合中迭代构建约束的短语树集。在Fisher会话语音语料库的实验中,将学习到的短语合并到潜在主题模型中,在数据中存在的已知主题的无监督发现方面取得了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling multiword phrases with constrained phrase trees for improved topic modeling of conversational speech
Latent topic modeling has proven to be an effective means for learning the underlying semantic content within document collections. Latent topic modeling has traditionally been applied to bag-of-words representations that ignore word sequence information that can aid in semantic understanding. In this work we introduce a method for efficiently incorporating arbitrarily long word sequences into a topic modeling approach. This method iteratively constructs a constrained set of phrase trees in an unsupervised fashion from a document collection using weighted pointwise mutual information statistics to guide the process. In experiments on the Fisher Corpus of conversational speech, the incorporation of learned phrases into a latent topic model yielded significant improvements in the unsupervised discovery of the known topics present within the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信