数据放置对多服务器OODBMS内存管理的影响

S. Venkataraman, M. Livny, J. Naughton
{"title":"数据放置对多服务器OODBMS内存管理的影响","authors":"S. Venkataraman, M. Livny, J. Naughton","doi":"10.1109/ICDE.1995.380372","DOIUrl":null,"url":null,"abstract":"We demonstrate the close relationship between data placement and memory management for symmetric multi-server OODBMS. We propose and investigate memory management algorithms for two data placement strategies, namely declustering and clustering. Through a detailed simulation, we show that by declustering the data most of the benefits of complex global memory management algorithms are realized by simple algorithms. In contrast we show that when data is clustered, the simple algorithms perform poorly.<<ETX>>","PeriodicalId":184415,"journal":{"name":"Proceedings of the Eleventh International Conference on Data Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The impact of data placement on memory management for multi-server OODBMS\",\"authors\":\"S. Venkataraman, M. Livny, J. Naughton\",\"doi\":\"10.1109/ICDE.1995.380372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the close relationship between data placement and memory management for symmetric multi-server OODBMS. We propose and investigate memory management algorithms for two data placement strategies, namely declustering and clustering. Through a detailed simulation, we show that by declustering the data most of the benefits of complex global memory management algorithms are realized by simple algorithms. In contrast we show that when data is clustered, the simple algorithms perform poorly.<<ETX>>\",\"PeriodicalId\":184415,\"journal\":{\"name\":\"Proceedings of the Eleventh International Conference on Data Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1995.380372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1995.380372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们演示了对称多服务器OODBMS的数据放置和内存管理之间的密切关系。我们提出并研究了两种数据放置策略的内存管理算法,即分簇和聚类。通过详细的仿真,我们表明,通过对数据进行聚类,可以通过简单的算法实现复杂全局内存管理算法的大部分优点。相反,当数据被聚类时,简单的算法表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of data placement on memory management for multi-server OODBMS
We demonstrate the close relationship between data placement and memory management for symmetric multi-server OODBMS. We propose and investigate memory management algorithms for two data placement strategies, namely declustering and clustering. Through a detailed simulation, we show that by declustering the data most of the benefits of complex global memory management algorithms are realized by simple algorithms. In contrast we show that when data is clustered, the simple algorithms perform poorly.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信