(定参数)浅-轻斯坦纳网络需求图的刻画

Amy Babay, M. Dinitz, Zeyu Zhang
{"title":"(定参数)浅-轻斯坦纳网络需求图的刻画","authors":"Amy Babay, M. Dinitz, Zeyu Zhang","doi":"10.4230/LIPIcs.FSTTCS.2018.33","DOIUrl":null,"url":null,"abstract":"We consider the Shallow-Light Steiner Network problem from a fixed-parameter perspective. Given a graph $G$, a distance bound $L$, and $p$ pairs of vertices $(s_1,t_1),\\cdots,(s_p,t_p)$, the objective is to find a minimum-cost subgraph $G'$ such that $s_i$ and $t_i$ have distance at most $L$ in $G'$ (for every $i \\in [p]$). Our main result is on the fixed-parameter tractability of this problem with parameter $p$. We exactly characterize the demand structures that make the problem \"easy\", and give FPT algorithms for those cases. In all other cases, we show that the problem is W$[1]$-hard. We also extend our results to handle general edge lengths and costs, precisely characterizing which demands allow for good FPT approximation algorithms and which demands remain W$[1]$-hard even to approximate.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network\",\"authors\":\"Amy Babay, M. Dinitz, Zeyu Zhang\",\"doi\":\"10.4230/LIPIcs.FSTTCS.2018.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Shallow-Light Steiner Network problem from a fixed-parameter perspective. Given a graph $G$, a distance bound $L$, and $p$ pairs of vertices $(s_1,t_1),\\\\cdots,(s_p,t_p)$, the objective is to find a minimum-cost subgraph $G'$ such that $s_i$ and $t_i$ have distance at most $L$ in $G'$ (for every $i \\\\in [p]$). Our main result is on the fixed-parameter tractability of this problem with parameter $p$. We exactly characterize the demand structures that make the problem \\\"easy\\\", and give FPT algorithms for those cases. In all other cases, we show that the problem is W$[1]$-hard. We also extend our results to handle general edge lengths and costs, precisely characterizing which demands allow for good FPT approximation algorithms and which demands remain W$[1]$-hard even to approximate.\",\"PeriodicalId\":175000,\"journal\":{\"name\":\"Foundations of Software Technology and Theoretical Computer Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Software Technology and Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们从固定参数的角度考虑浅-轻斯坦纳网络问题。给定一个图$G$,一个距离限定$L$,和$p$对顶点$(s_1,t_1),\cdots,(s_p,t_p)$,目标是找到一个最小代价子图$G'$,使得$s_i$和$t_i$在$G'$(对于每一个$i \in [p]$)中有最多$L$的距离。我们的主要结果是关于这个带有参数$p$的问题的定参数可跟踪性。我们准确地描述了使问题“容易”的需求结构,并给出了这些情况下的FPT算法。在所有其他情况下,我们表明问题是W$[1]$-hard。我们还扩展了我们的结果来处理一般的边缘长度和成本,精确地描述了哪些需求允许良好的FPT近似算法,哪些需求仍然是W$[1]$-甚至难以近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network
We consider the Shallow-Light Steiner Network problem from a fixed-parameter perspective. Given a graph $G$, a distance bound $L$, and $p$ pairs of vertices $(s_1,t_1),\cdots,(s_p,t_p)$, the objective is to find a minimum-cost subgraph $G'$ such that $s_i$ and $t_i$ have distance at most $L$ in $G'$ (for every $i \in [p]$). Our main result is on the fixed-parameter tractability of this problem with parameter $p$. We exactly characterize the demand structures that make the problem "easy", and give FPT algorithms for those cases. In all other cases, we show that the problem is W$[1]$-hard. We also extend our results to handle general edge lengths and costs, precisely characterizing which demands allow for good FPT approximation algorithms and which demands remain W$[1]$-hard even to approximate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信