高特征值下最小线性排列问题的逼近保证

Suguru Tamaki, Yuichi Yoshida
{"title":"高特征值下最小线性排列问题的逼近保证","authors":"Suguru Tamaki, Yuichi Yoshida","doi":"10.1145/3228342","DOIUrl":null,"url":null,"abstract":"Given an n-vertex undirected graph G = (V,E) and positive edge weights {we}e∈E, a linear arrangement is a permutation π : V → {1, 2, …, n}. The value of the arrangement is val(G, π) := 1/n∑ e ={u, v} ∈ E we|π(u) − π (v)|. In the minimum linear arrangement problem, the goal is to find a linear arrangement π * that achieves val(G, π*) = MLA(G) := min π val(G, π). In this article, we show that for any ε > 0 and positive integer r, there is an nO(r/ϵ)-time randomized algorithm that, given a graph G, returns a linear arrangement π, such that val(G, π) ≤ (1 + 2/(1 − ε)λr(L)) MLA(G) + O(√log n/n ∑ e ∈ E we) with high probability, where L is the normalized Laplacian of G and λr(L) is the rth smallest eigenvalue of L. Our algorithm gives a constant factor approximation for regular graphs that are weak expanders.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"544 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximation Guarantees for the Minimum Linear Arrangement Problem by Higher Eigenvalues\",\"authors\":\"Suguru Tamaki, Yuichi Yoshida\",\"doi\":\"10.1145/3228342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an n-vertex undirected graph G = (V,E) and positive edge weights {we}e∈E, a linear arrangement is a permutation π : V → {1, 2, …, n}. The value of the arrangement is val(G, π) := 1/n∑ e ={u, v} ∈ E we|π(u) − π (v)|. In the minimum linear arrangement problem, the goal is to find a linear arrangement π * that achieves val(G, π*) = MLA(G) := min π val(G, π). In this article, we show that for any ε > 0 and positive integer r, there is an nO(r/ϵ)-time randomized algorithm that, given a graph G, returns a linear arrangement π, such that val(G, π) ≤ (1 + 2/(1 − ε)λr(L)) MLA(G) + O(√log n/n ∑ e ∈ E we) with high probability, where L is the normalized Laplacian of G and λr(L) is the rth smallest eigenvalue of L. Our algorithm gives a constant factor approximation for regular graphs that are weak expanders.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"544 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3228342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3228342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给定一个n顶点无向图G = (V,E),且正边权{we} E∈E,则线性排列是一个排列π: V→{1,2,…,n}。排列的值为val(G, π):= 1/n∑e ={u, v}∈e we|π(u)−π(v)|。在最小线性排列问题中,目标是找到一个满足val(G, π*) = MLA(G):= min π val(G, π)的线性排列π*。在本文中,我们表明,对于任何ε> 0和正整数r,是一个没有(r /ϵ)-随机算法,给定一个图G,返回一个线性安排π,这样瓦尔(G,π)≤(1 + 2 /(1−ε)λr (L)) MLA (G) + O(√log n / n∑e∈e)有高概率,L是G的规范化的拉普拉斯算子和λr (L)的最小特征值仅仅是L算法给出了一个常数因子近似正则图的弱扩展器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Guarantees for the Minimum Linear Arrangement Problem by Higher Eigenvalues
Given an n-vertex undirected graph G = (V,E) and positive edge weights {we}e∈E, a linear arrangement is a permutation π : V → {1, 2, …, n}. The value of the arrangement is val(G, π) := 1/n∑ e ={u, v} ∈ E we|π(u) − π (v)|. In the minimum linear arrangement problem, the goal is to find a linear arrangement π * that achieves val(G, π*) = MLA(G) := min π val(G, π). In this article, we show that for any ε > 0 and positive integer r, there is an nO(r/ϵ)-time randomized algorithm that, given a graph G, returns a linear arrangement π, such that val(G, π) ≤ (1 + 2/(1 − ε)λr(L)) MLA(G) + O(√log n/n ∑ e ∈ E we) with high probability, where L is the normalized Laplacian of G and λr(L) is the rth smallest eigenvalue of L. Our algorithm gives a constant factor approximation for regular graphs that are weak expanders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信