揭示分子生物学实验图像上人为修饰的痕迹

H. Shao
{"title":"揭示分子生物学实验图像上人为修饰的痕迹","authors":"H. Shao","doi":"10.1109/GlobalSIP.2018.8646594","DOIUrl":null,"url":null,"abstract":"There are always inaccurate image data, in a scientific paper, created by inappropriate post-processing operations. Hence, we propose in this paper a fast algorithm able to expose man-made invisible modifications on molecular-biological images. We designed an optimization equation to separate the approximated trend component from the input image. Then, we utilize the difference between the input and its approximated trend to bring out the discontinuities within the input image. We applied our method on a blind test image set and images extracted from papers that have been questioned by the public. The experiment results show that there indeed exist unnatural patterns on several screened images. Because screening for fabricated images on published papers is a sensitive topic, our MATLAB code will be released only after we present this paper at IEEE GlobalSIP 2018.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UNVEILING VESTIGES OF MAN-MADE MODIFICATIONS ON MOLECULAR-BIOLOGICAL EXPERIMENT IMAGES\",\"authors\":\"H. Shao\",\"doi\":\"10.1109/GlobalSIP.2018.8646594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are always inaccurate image data, in a scientific paper, created by inappropriate post-processing operations. Hence, we propose in this paper a fast algorithm able to expose man-made invisible modifications on molecular-biological images. We designed an optimization equation to separate the approximated trend component from the input image. Then, we utilize the difference between the input and its approximated trend to bring out the discontinuities within the input image. We applied our method on a blind test image set and images extracted from papers that have been questioned by the public. The experiment results show that there indeed exist unnatural patterns on several screened images. Because screening for fabricated images on published papers is a sensitive topic, our MATLAB code will be released only after we present this paper at IEEE GlobalSIP 2018.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在一篇科学论文中,总是存在不准确的图像数据,这是由于不适当的后处理操作造成的。因此,我们在本文中提出了一种快速算法,能够在分子生物学图像上暴露人为的不可见修改。我们设计了一个优化方程,将近似趋势分量从输入图像中分离出来。然后,我们利用输入与其近似趋势之间的差值来显示输入图像中的不连续点。我们将我们的方法应用于盲测图像集和从公众质疑的论文中提取的图像。实验结果表明,在若干筛选图像上确实存在不自然的图案。因为在已发表的论文中筛选伪造图像是一个敏感的话题,我们的MATLAB代码将在我们在IEEE GlobalSIP 2018上发表这篇论文后发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNVEILING VESTIGES OF MAN-MADE MODIFICATIONS ON MOLECULAR-BIOLOGICAL EXPERIMENT IMAGES
There are always inaccurate image data, in a scientific paper, created by inappropriate post-processing operations. Hence, we propose in this paper a fast algorithm able to expose man-made invisible modifications on molecular-biological images. We designed an optimization equation to separate the approximated trend component from the input image. Then, we utilize the difference between the input and its approximated trend to bring out the discontinuities within the input image. We applied our method on a blind test image set and images extracted from papers that have been questioned by the public. The experiment results show that there indeed exist unnatural patterns on several screened images. Because screening for fabricated images on published papers is a sensitive topic, our MATLAB code will be released only after we present this paper at IEEE GlobalSIP 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信