基于卡尔曼滤波的传感器监测自适应采样技术

Minkee Kim, Jun-Ki Min
{"title":"基于卡尔曼滤波的传感器监测自适应采样技术","authors":"Minkee Kim, Jun-Ki Min","doi":"10.3745/KIPSTD.2010.17D.3.185","DOIUrl":null,"url":null,"abstract":"ABSTRACT In sensor network environments, each sensor measures the physical environments according to the sampling period, and transmits a sensor reading to the base station. Thus, the sample period influences against importance resources such as a network bandwidth, and a battery power. In this paper, we propose new adaptive sampling technique that adjusts the sampling period of a sensor with respect to the features of sensor readings. The proposed technique predicts a future readings based on KF (Kalman Fiter). By using the differences of actual readings and estimated reading, we identify the importance of sensor readings, and then, we adjust the sampling period according to the importance. In our experiments, we demonstrate the effectiveness of our technique. Keywords:WSN, Adaptive Sampling, Kalman Filter 1. 서 론 1) 무선 센서 네트워크 (Wireless Sensor Network: WSN) 는 제한된 전원을 지닌 수 백에서 수 천개의 센서들로 이루어져있다. 최근 마이크로 센서 기술과 무선 통신 기술의 발전으로 대량 저비용 센서들로 구성된 무선 센서 네트워크는 군사 보안, 환경 모니터링 등의 다양한 분야에 적용가능하게 되었다. WSN의 규모가 커지면서 기존의 대역폭, 배터리 등의 문제가 점점 더 대두되고 있는 시점이다. 제한된 대역","PeriodicalId":348746,"journal":{"name":"The Kips Transactions:partd","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Adaptive Sampling Technique based on the Kalman Filter for Sensor Monitoring\",\"authors\":\"Minkee Kim, Jun-Ki Min\",\"doi\":\"10.3745/KIPSTD.2010.17D.3.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In sensor network environments, each sensor measures the physical environments according to the sampling period, and transmits a sensor reading to the base station. Thus, the sample period influences against importance resources such as a network bandwidth, and a battery power. In this paper, we propose new adaptive sampling technique that adjusts the sampling period of a sensor with respect to the features of sensor readings. The proposed technique predicts a future readings based on KF (Kalman Fiter). By using the differences of actual readings and estimated reading, we identify the importance of sensor readings, and then, we adjust the sampling period according to the importance. In our experiments, we demonstrate the effectiveness of our technique. Keywords:WSN, Adaptive Sampling, Kalman Filter 1. 서 론 1) 무선 센서 네트워크 (Wireless Sensor Network: WSN) 는 제한된 전원을 지닌 수 백에서 수 천개의 센서들로 이루어져있다. 최근 마이크로 센서 기술과 무선 통신 기술의 발전으로 대량 저비용 센서들로 구성된 무선 센서 네트워크는 군사 보안, 환경 모니터링 등의 다양한 분야에 적용가능하게 되었다. WSN의 규모가 커지면서 기존의 대역폭, 배터리 등의 문제가 점점 더 대두되고 있는 시점이다. 제한된 대역\",\"PeriodicalId\":348746,\"journal\":{\"name\":\"The Kips Transactions:partd\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partd\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTD.2010.17D.3.185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partd","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTD.2010.17D.3.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ABSTRACT In sensor network environments, each sensor measures the physical environments according to the sampling period, and transmits a sensor reading to the base station。Thus, the sample period influences against importance resources such as a network bandwidth, and a battery power。In this paper, we propose new adaptive sampling technique that adjusts the sampling period of a sensor with respect to the features of sensor readings。The proposed technique predicts a future readings based on KF (Kalman Fiter)。By using the differences of actual readings and estimated reading, we identify the importance of sensor readings, and then, we adjust the sampling period according to the importance。In our experiments, we demonstrate the effectiveness of our technique。Keywords:WSN, Adaptive Sampling, Kalman Filter 1。无线传感器网络(Wireless Sensor Network, WSN)由数百到数千个传感器组成,电源有限。最近随着微型传感器技术和无线通信技术的发展,由大量低成本传感器组成的无线传感器网络可以应用于军事保安、环境监测等多种领域。随着WSN的规模的扩大,现有的带宽、电池等问题正在逐渐抬头。有限的替身
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Adaptive Sampling Technique based on the Kalman Filter for Sensor Monitoring
ABSTRACT In sensor network environments, each sensor measures the physical environments according to the sampling period, and transmits a sensor reading to the base station. Thus, the sample period influences against importance resources such as a network bandwidth, and a battery power. In this paper, we propose new adaptive sampling technique that adjusts the sampling period of a sensor with respect to the features of sensor readings. The proposed technique predicts a future readings based on KF (Kalman Fiter). By using the differences of actual readings and estimated reading, we identify the importance of sensor readings, and then, we adjust the sampling period according to the importance. In our experiments, we demonstrate the effectiveness of our technique. Keywords:WSN, Adaptive Sampling, Kalman Filter 1. 서 론 1) 무선 센서 네트워크 (Wireless Sensor Network: WSN) 는 제한된 전원을 지닌 수 백에서 수 천개의 센서들로 이루어져있다. 최근 마이크로 센서 기술과 무선 통신 기술의 발전으로 대량 저비용 센서들로 구성된 무선 센서 네트워크는 군사 보안, 환경 모니터링 등의 다양한 분야에 적용가능하게 되었다. WSN의 규모가 커지면서 기존의 대역폭, 배터리 등의 문제가 점점 더 대두되고 있는 시점이다. 제한된 대역
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信