基于ProbLog的建模与推理:在复杂活动识别中的应用

T. Sztyler, Gabriele Civitarese, H. Stuckenschmidt
{"title":"基于ProbLog的建模与推理:在复杂活动识别中的应用","authors":"T. Sztyler, Gabriele Civitarese, H. Stuckenschmidt","doi":"10.1109/PERCOMW.2018.8480299","DOIUrl":null,"url":null,"abstract":"Smart-homectivity recognition is an enabling tool for a wide range of ambient assisted living applications. The recognition of ADLs usually relies on supervised learning or knowledge-based reasoning techniques. In order to overcome the well-known limitations of those two approaches and, at the same time, to combine their strengths to improve the recognition rate, many researchers investigated Markov Logic Networks (MLNs). However, MLNs require a non-trivial effort by experts to properly model probabilities in terms of weights. In this paper, we propose a novel method based on ProbLog. ProbLog is a probabilistic extension of Prolog, which allows to explicitly define probabilistic facts and rules. With respect to MLN, the inference mode of ProbLog is based on the closed-world assumption and it has faster response times. We propose a simple and flexible ProbLog model, which we exploit to recognize complex ADLs in an online fashion. Considering a dataset with 21 subjects, our results show that our method reaches high F-measure (83%). Moreover, we also show that the response time of ProbLog is satisfying for real-time applications.","PeriodicalId":190096,"journal":{"name":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling and Reasoning with ProbLog: An Application in Recognizing Complex Activities\",\"authors\":\"T. Sztyler, Gabriele Civitarese, H. Stuckenschmidt\",\"doi\":\"10.1109/PERCOMW.2018.8480299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart-homectivity recognition is an enabling tool for a wide range of ambient assisted living applications. The recognition of ADLs usually relies on supervised learning or knowledge-based reasoning techniques. In order to overcome the well-known limitations of those two approaches and, at the same time, to combine their strengths to improve the recognition rate, many researchers investigated Markov Logic Networks (MLNs). However, MLNs require a non-trivial effort by experts to properly model probabilities in terms of weights. In this paper, we propose a novel method based on ProbLog. ProbLog is a probabilistic extension of Prolog, which allows to explicitly define probabilistic facts and rules. With respect to MLN, the inference mode of ProbLog is based on the closed-world assumption and it has faster response times. We propose a simple and flexible ProbLog model, which we exploit to recognize complex ADLs in an online fashion. Considering a dataset with 21 subjects, our results show that our method reaches high F-measure (83%). Moreover, we also show that the response time of ProbLog is satisfying for real-time applications.\",\"PeriodicalId\":190096,\"journal\":{\"name\":\"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2018.8480299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2018.8480299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

智能同质性识别是广泛的环境辅助生活应用的使能工具。adl的识别通常依赖于监督学习或基于知识的推理技术。为了克服这两种方法众所周知的局限性,同时结合它们的优点来提高识别率,许多研究者研究了马尔可夫逻辑网络(mln)。然而,mln需要专家付出巨大的努力来正确地根据权重对概率进行建模。本文提出了一种基于ProbLog的新方法。ProbLog是Prolog的概率扩展,它允许显式地定义概率事实和规则。相对于MLN, ProbLog的推理模式基于闭世界假设,具有更快的响应时间。我们提出了一个简单而灵活的ProbLog模型,我们利用它来在线识别复杂的adl。考虑到21个受试者的数据集,我们的结果表明我们的方法达到了高F-measure(83%)。此外,我们还证明了ProbLog的响应时间对于实时应用来说是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Reasoning with ProbLog: An Application in Recognizing Complex Activities
Smart-homectivity recognition is an enabling tool for a wide range of ambient assisted living applications. The recognition of ADLs usually relies on supervised learning or knowledge-based reasoning techniques. In order to overcome the well-known limitations of those two approaches and, at the same time, to combine their strengths to improve the recognition rate, many researchers investigated Markov Logic Networks (MLNs). However, MLNs require a non-trivial effort by experts to properly model probabilities in terms of weights. In this paper, we propose a novel method based on ProbLog. ProbLog is a probabilistic extension of Prolog, which allows to explicitly define probabilistic facts and rules. With respect to MLN, the inference mode of ProbLog is based on the closed-world assumption and it has faster response times. We propose a simple and flexible ProbLog model, which we exploit to recognize complex ADLs in an online fashion. Considering a dataset with 21 subjects, our results show that our method reaches high F-measure (83%). Moreover, we also show that the response time of ProbLog is satisfying for real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信