基于YOLO的货架图像目标检测

Ceren Gulra Melek, Elena Battini Sonmez, S. Albayrak
{"title":"基于YOLO的货架图像目标检测","authors":"Ceren Gulra Melek, Elena Battini Sonmez, S. Albayrak","doi":"10.1109/EUROCON.2019.8861817","DOIUrl":null,"url":null,"abstract":"Object detection in shelf images can solve many problems in retails sales such as monitoring the number of products on the shelves, completing the missing products and matching the planogram continuously. This study aims to detect object in shelf images with deep learning algorithms. Firstly, object detection algorithms and datasets are examined in the literature. Then, experimental study is performed using Coca Cola images obtained from Imagenet and Grocery dataset with YOLO (You Only Look Once) algorithm. Results of the study are discussed from different sides such as number of classes, threshold values and numder of iteration.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"547 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Object Detection in Shelf Images with YOLO\",\"authors\":\"Ceren Gulra Melek, Elena Battini Sonmez, S. Albayrak\",\"doi\":\"10.1109/EUROCON.2019.8861817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection in shelf images can solve many problems in retails sales such as monitoring the number of products on the shelves, completing the missing products and matching the planogram continuously. This study aims to detect object in shelf images with deep learning algorithms. Firstly, object detection algorithms and datasets are examined in the literature. Then, experimental study is performed using Coca Cola images obtained from Imagenet and Grocery dataset with YOLO (You Only Look Once) algorithm. Results of the study are discussed from different sides such as number of classes, threshold values and numder of iteration.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"547 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

货架图像中的目标检测可以解决零售销售中的许多问题,如货架上产品数量的监控、缺失产品的补全、平面图的连续匹配等。本研究旨在利用深度学习算法检测货架图像中的物体。首先,对文献中的目标检测算法和数据集进行了研究。然后,采用YOLO (You Only Look Once)算法对从Imagenet和Grocery数据集获取的可口可乐图像进行实验研究。从类数、阈值、迭代次数等方面对研究结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Detection in Shelf Images with YOLO
Object detection in shelf images can solve many problems in retails sales such as monitoring the number of products on the shelves, completing the missing products and matching the planogram continuously. This study aims to detect object in shelf images with deep learning algorithms. Firstly, object detection algorithms and datasets are examined in the literature. Then, experimental study is performed using Coca Cola images obtained from Imagenet and Grocery dataset with YOLO (You Only Look Once) algorithm. Results of the study are discussed from different sides such as number of classes, threshold values and numder of iteration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信